Molten Salts–Assisted Fabrication of Fe, S, and N Co-Doped Carbon as Efficient Oxygen Reduction Reaction Catalyst
Mengyao Lv
College of Chemistry, Liaoning University, Shenyang, 110036 China
Institute of New Energy Technology, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201 China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorFenghui Fan
Institute of New Energy Technology, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorLonghai Pan
Institute of New Energy Technology, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201 China
Search for more papers by this authorHangjia Shen
Institute of New Energy Technology, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201 China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Erum Pervaiz
Chemical Engineering Department, National University of Sciences & Technology (NUST), Islamabad, 44000 Pakistan
Search for more papers by this authorJiacheng Wang
Institute of New Energy Technology, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201 China
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050 China
Search for more papers by this authorCorresponding Author
Minghui Yang
Institute of New Energy Technology, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201 China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Jun Wang
College of Chemistry, Liaoning University, Shenyang, 110036 China
Search for more papers by this authorMengyao Lv
College of Chemistry, Liaoning University, Shenyang, 110036 China
Institute of New Energy Technology, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201 China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorFenghui Fan
Institute of New Energy Technology, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorLonghai Pan
Institute of New Energy Technology, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201 China
Search for more papers by this authorHangjia Shen
Institute of New Energy Technology, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201 China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Erum Pervaiz
Chemical Engineering Department, National University of Sciences & Technology (NUST), Islamabad, 44000 Pakistan
Search for more papers by this authorJiacheng Wang
Institute of New Energy Technology, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201 China
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050 China
Search for more papers by this authorCorresponding Author
Minghui Yang
Institute of New Energy Technology, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201 China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Jun Wang
College of Chemistry, Liaoning University, Shenyang, 110036 China
Search for more papers by this authorAbstract
Fabrication of an oxygen reduction reaction (ORR) catalyst is the key to an efficient and fast electrocatalytic process in a fuel cell for energy conversion. A reasonable strategy for the synthesis of electrocatalysts is one of the most promising ways for developing precious metal-free ORR catalysts. Herein, the synthesis of a highly active Fe3O4-based catalyst using a facile molten salts method is proposed. The electrocatalytic analysis shows superior ORR performance with an admirable half-wave potential (E1/2 = 0.83 V), comparable with the commercial 20 wt% Pt/C. In contrast, primary Zn–air battery, using synthesized Fe,S–N–C as an air-cathode, displays an open-circuit potential of 1.44 V and a high power density of 84.3 mW cm−2.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
ente201900896-sup-0001-SuppData-S1.docx2.6 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) J. Liu, W. Fang, Z. Wei, Z. Qin, Z. Jiang, W. Shangguan, Appl. Catal. B Environ. 2018, 238, 465; b) Y. Liu, S. Liu, Y. Wang, Q. Zhang, L. Gu, S. Zhao, D. Xu, Y. Li, J. Bao, Z. Dai, J. Am. Chem. Soc. 2018, 140, 2731.
- 2a) S. H. Kim, Y. J. Lee, D. H. Kim, Y. J. Lee, ACS Appl. Mater. Interfaces, 2018, 10, 660; b) T. Wang, Z. Kou, S. Mu, J. Liu, D. He, I. S. Amiinu, W. Meng, K. Zhou, Z. Luo, S. Chaemchuen, F. Verpoort, Adv. Funct. Mater. 2018, 28, e1705048; c) H. J. Qiu, P. Du, K. Hu, J. Gao, H. Li, P. Liu, T. Ina, K. Ohara, Y. Ito, M. Chen, Adv. Mater. 2019, 31, e1900843; d) Z. Li, L. Wei, W.-J. Jiang, Z. Hu, H. Luo, W. Zhao, T. Xu, W. Wu, M. Wu, J.-S. Hu, Appl. Catal. B Environ. 2019, 251, 240.
- 3a) J. Li, S. Chen, N. Yang, M. Deng, S. Ibraheem, J. Deng, J. Li, L. Li, Z. Wei, Angew. Chem. Int. Ed. 2019, 58, 7035; b) L. Yang, X. Zeng, D. Wang, D. Cao, Energy Storage Mater. 2018, 12, 277; c) M. Wang, C. Zhang, T. Meng, Z. Pu, H. Jin, D. He, J. Zhang, S. Mu, J. Power Sources, 2019, 413, 367.
- 4a) Y. Qiu, L. Xin, F. Jia, J. Xie, W. Li, Langmuir, 2016, 32, 12569; b) R. Li, Y. Liu, H. Li, M. Zhang, Y. Lu, L. Zhang, J. Xiao, F. Boehm, K. Yan, Small Methods, 2019, 3, 1800344
- 5a) W. W. McNeary, S. F. Zaccarine, A. Lai, A. E. Linico, S. Pylypenko, A. W. Weimer, Appl. Catal. B Environ. 2019, 254, 587; b) J. Li, S. Chen, N. Yang, M. Deng, S. Ibraheem, J. Deng, J. Li, L. Li, Z. Wei, Angew. Chem. Int. Ed. 2019, 58, 7035.
- 6Z. Zhao, H. Liu, W. Gao, W. Xue, Z. Liu, J. Huang, X. Pan, Y. Huang, J. Am. Chem. Soc. 2018, 140, 9046.
- 7a) M. Zhao, X. Wang, X. Yang, K. D. Gilroy, D. Qin, Y. Xia, Adv. Mater. 2018, 30, e1801956;
b) T. Zhang, K. Yang, C. Wang, S. Li, Q. Zhang, X. Chang, J. Li, S. Li, S. Jia, J. Wang, L. Fu, Adv. Energy Mater. 2018, 8, 1870129;
10.1002/aenm.201870129 Google Scholarc) H. Zeng, W. Wang, J. Li, J. Luo, S. Chen, ACS Appl. Mater. Interfaces. 2018, 10, 8721.
- 8D. Yan, L. Guo, C. Xie, Y. Wang, Y. Li, H. Li, S. Wang, Sci. China Mater. 2017, 61, 679.
- 9a) X. Yan, Y. Yao, Y. Chen, Nanoscale Res. Lett. 2018, 13, 218; b) Y. J. Wu, Y. C. Wang, R. X. Wang, P. F. Zhang, X. D. Yang, H. J. Yang, J. T. Li, Y. Zhou, Z. Y. Zhou, S. G. Sun, ACS Appl. Mater. Interfaces. 2018, 10, 14602.
- 10H. Yuan, Y. Hou, I. M. Abu-Reesh, J. Chen, Z. He, Mater. Horiz. 2016, 3, 382.
- 11F. Zhao, F. Harnisch, U. Schröder, F. Scholz, P. Bogdanoff, I. Herrmann, Electrochem. Commun. 2005, 7, 1405.
- 12a) G.-C. Li, X.-N. Hua, P.-F. Liu, Y.-X. Xie, L. Han, Mater. Chem. Phys. 2015, 168, 127; b) S. R. Zhu, P. F. Liu, M. K. Wu, W. N. Zhao, G. C. Li, K. Tao, F. Y. Yi, L. Han, Dalton Trans. 2016, 45, 17521; c) P. F. Liu, K. Tao, G. C. Li, M. K. Wu, S. R. Zhu, F. Y. Yi, W. N. Zhao, L. Han, Dalton Trans. 2016, 45, 12632.
- 13G.-C. Li, M. Liu, M.-K. Wu, P.-F. Liu, Z. Zhou, S.-R. Zhu, R. Liu, L. Han, RSC Adv. 2016, 6, 103517.
- 14a) L. Lin, Q. Zhu, A. W. Xu, J. Am. Chem. Soc. 2014, 136, 11027; b) H. Zhang, X. Ma, C. Cao, M. Wang, Y. Zhu, RSC Adv. 2014, 4, 41572.
- 15Z. Li, G. Li, L. Jiang, J. Li, G. Sun, C. Xia, F. Li, Angew. Chem. Int. Ed. 2015, 54, 1494.
- 16a) P. C. Panta, C. P. Bergmann, J. Mater. Sci. Eng. 2015, 05, 1; b) O. N. Shebanova, P. Lazor, J. Raman Spectrosc. 2003, 34, 845.
- 17K. Hu, L. Tao, D. Liu, J. Huo, S. Wang, ACS Appl. Mater. Interfaces, 2016, 8, 19379.
- 18P. Xu, J. Zhang, G. Jiang, F. Hassan, J.-Y. Choi, X. Fu, P. Zamani, L. Yang, D. Banham, S. Ye, Z. Chen, Nano Energy, 2018, 51, 745.
- 19X. Chen, P. Gao, H. Liu, J. Xu, B. Zhang, Y. Zhang, Y. Tang, C. Xiao, Electrochim. Acta. 2018, 267, 8.
- 20a) S. Ratso, N. Ranjbar Sahraie, M. T. Sougrati, M. Käärik, M. Kook, R. Saar, P. Paiste, Q. Jia, J. Leis, S. Mukerjee, F. Jaouen, K. Tammeveski, J. Mater. Chem A. 2018, 6, 14663; b) J. Li, S. Chen, W. Li, R. Wu, S. Ibraheem, J. Li, W. Ding, L. Li, Z. Wei, J. Mater. Chem A. 2018, 6, 15504; c) Q. Cheng, S. Han, K. Mao, C. Chen, L. Yang, Z. Zou, M. Gu, Z. Hu, H. Yang, Nano Energy, 2018, 52, 485.
- 21A. Zitolo, V. Goellner, V. Armel, M. T. Sougrati, T. Mineva, L. Stievano, E. Fonda, F. Jaouen, Nat. Mater. 2015, 14, 937.
- 22Y. B. Khollam, S. R. Dhage, H. S. Potdar, S. B. Deshpande, P. P. Bakare, S. D. Kulkarni, S. K. Date, Mater. Lett. 2002, 56, 571.