Prepotassiated V2O5 as the Cathode Material for High-Voltage Potassium-Ion Batteries
Kai Yuan
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072 China
Search for more papers by this authorRuiqi Ning
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072 China
Search for more papers by this authorMaohui Bai
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072 China
School of Metallurgy and Environment, Central South University, Changsha, 410083 China
Search for more papers by this authorNan Hu
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072 China
Search for more papers by this authorKun Zhang
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072 China
Search for more papers by this authorJinlei Gu
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072 China
Search for more papers by this authorQingyu Li
Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004 China
Search for more papers by this authorYouguo Huang
Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004 China
Search for more papers by this authorCorresponding Author
Chao Shen
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072 China
Search for more papers by this authorCorresponding Author
Keyu Xie
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072 China
Search for more papers by this authorKai Yuan
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072 China
Search for more papers by this authorRuiqi Ning
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072 China
Search for more papers by this authorMaohui Bai
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072 China
School of Metallurgy and Environment, Central South University, Changsha, 410083 China
Search for more papers by this authorNan Hu
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072 China
Search for more papers by this authorKun Zhang
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072 China
Search for more papers by this authorJinlei Gu
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072 China
Search for more papers by this authorQingyu Li
Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004 China
Search for more papers by this authorYouguo Huang
Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004 China
Search for more papers by this authorCorresponding Author
Chao Shen
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072 China
Search for more papers by this authorCorresponding Author
Keyu Xie
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072 China
Search for more papers by this authorAbstract
The voltage and capacity of cathodes are critical factors for energy density of batteries. However, the cutoff voltage of cathode materials in potassium-ion batteries (PIBs) is usually 4.0 V, causing structural transformations in the electrode materials in the course of repeated insertion/extraction of K+ ions with a large radius (1.38 Å). Materials with large interlayer spacing and short ion diffusion paths show promise to overcome this issue. K0.486V2O5 nanobelts, prepared by preinserting K+ ions into V2O5, are used as cathode materials in high-voltage PIBs. Various analysis methods are used to understand the insertion/extraction behavior of K+ ions in K0.486V2O5 cathodes cycled between 1.5 and 4.2 V. The analyses reveal the highly reversible structural evolution of K0.486V2O5, in which the chemically inserted K+ ions partially remain between VO layers charged at high voltage serving as stabilizing species to prevent phase transformations. K0.486V2O5 cathodes exhibit a high specific capacity of 159 mAh g−1 at 20 mA g−1 with good cycling stability of 67.4% after 100 cycles at 100 mAh g−1 in the half K-ion cell. The results provide guidelines for designing layered transition metal oxides to be used as cathode materials for high-voltage PIBs with high energy density.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
ente201900796-sup-0001-SuppData-S1.docx546.1 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. C. Pramudita, D. Sehrawat, D. Goonetilleke, N. Sharma, Adv. Energy Mater. 2017, 7, 1602911.
- 2Z. Jian, W. Luo, X. Ji, J. Am. Chem. Soc. 2015, 137, 11566.
- 3A. Eftekhari, Z. Jian, X. Ji, ACS Appl. Mater. Interfaces 2017, 9, 4404.
- 4M. Bai, K. Xie, K. Yuan, K. Zhang, N. Li, C. Shen, Y. Lai, R. Vajtai, P. Ajayan, B. Wei, Adv. Mater. 2018, 30, 1801213.
- 5Q. Song, H. Yan, K. Liu, K. Xie, W. Li, W. Gai, G. Chen, H. Li, C. Shen, Q. Fu, S. Zhang, L. Zhang, B. Wei, Adv. Energy Mater. 2018, 8, 1800564.
- 6X. Wu, D. P. Leonard, X. Ji, Chem. Mater. 2017, 29, 5031.
- 7F. Sagane, T. Abe, Y. Iriyama, Z. Ogumi, J. Power Sources 2005, 146, 749.
- 8M. H. Choi, C. S. Yoon, S. T. Myung, B. B. Lim, S. Komaba, Y. K. Sun, J. Electrochem. Soc. 2015, 162, A2313.
- 9W. Luo, J. Wan, B. Ozdemir, W. Bao, Y. Chen, J. Dai, H. Lin, Y. Xu, F. Gu, V. Barone, L. Hu, Nano Lett. 2015, 15, 7671.
- 10C. Shen, K. Yuan, T. Tian, M. Bai, J. G. Wang, X. Li, K. Xie, Q. G. Fu, B. Wei, ACS Appl. Mater. Interfaces 2019, 11, 5015.
- 11H. Kim, D. H. Seo, M. Bianchini, R. J. Clément, H. Kim, J. C. Kim, Y. Tian, T. Shi, W. S. Yoon, G. Ceder, Adv. Energy Mater. 2018, 8, 1801591.
- 12K. Chihara, A. Katogi, K. Kubota, S. Komaba, Chem. Commun. 2017, 53, 5208.
- 13J. Han, G. N. Li, F. Liu, M. Wang, Y. Zhang, L. Hu, C. Dai, M. Xu, Chem. Commun. 2017, 53, 1805.
- 14V. Mathew, S. Kim, J. Kang, J. Gim, J. Song, J. P. Baboo, W. Park, D. Ahn, J. Han, L. Gu, Y. Wang, Y. S. Hu, Y. K. Sun, J. Kim, NPG Asia Mater. 2014, 6, e138.
- 15L. Xue, Y. Li, H. Gao, W. Zhou, X. Lu, W. Kaveevivitchai, A. Manthiram, J. B. Goodenough, J. Am. Chem. Soc. 2017, 139, 2164.
- 16X. Bie, K. Kubota, T. Hosaka, K. Chihara, S. Komaba, J. Mater. Chem. A 2017, 5, 4325.
- 17A. Gao, M. Li, N. Guo, D. Qiu, Y. Li, S. Wang, X. Lu, F. Wang, R. Yang, Adv. Energy Mater. 2018, 9, 1802739.
- 18C. Liu, S. Luo, H. Huang, Y. Zhai, Z. Wang, Chem. Eng. J. 2019, 356, 53.
- 19H. Kim, D. H. Seo, A. Urban, J. Lee, D. H. Kwon, S. H. Bo, T. Shi, J. K. Papp, B. D. McCloskey, G. Ceder, Chem. Mater. 2018, 30, 6532.
- 20J. Y. Hwang, J. Kim, T. Y. Yu, S. T. Myung, Y. K. Sun, Energy Environ. Sci. 2018, 11, 2821.
- 21C. L. Liu, S. H. Luo, H. B. Huang, Y. C. Zhai, Z. W. Wang, Electrochim. Acta 2018, 286, 114.
- 22Y. Chen, W. Luo, M. Carter, L. Zhou, J. Dai, K. Fu, S. Lacey, T. Li, J. Wan, X. Han, Y. Bao, L. Hu, Nano Energy 2015, 18, 205.
- 23L. Chen, S. Liu, Y. Wang, W. Liu, Y. Dong, Q. Kuang, Y. Zhao, Electrochim. Acta 2019, 294, 46.
- 24K. Xie, K. Yuan, X. Li, W. Lu, C. Shen, C. Liang, R. Vajtai, P. Ajayan, B. Wei, Small 2017, 13, 1701471.
- 25H. Tan, S. Xie, J. Xu, N. Li, C. Zhang, L. Xu, J. Zheng, Sci. Adv. Mater. 2017, 9, 2223.
- 26H. Zhou, J. Zhou, T. Wang, J. Zeng, L. Liu, J. Jian, Z. Zhou, L. Zeng, Q. Liu, G. Liu, J. Hazard Mater. 2018, 359, 274.
- 27F. Wu, X. Li, Z. Wang, H. Guo, Nanoscale 2013, 5, 6936.
- 28Y. Ma, J. Ma, J. Chai, Z. Liu, G. Ding, G. Xu, H. Liu, B. Chen, X. Zhou, G. Cui, L. Chen, ACS Appl. Mater. Interfaces 2017, 9, 41462.
- 29V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Energy Environ. Sci. 2011, 4, 3243.
- 30X. H. Ma, W. Jia, J. Wang, J.-H. Zhou, Y. D. Wu, Y. Y. Wei, Z. F. Zi, J. M. Dai, Ceram. Int. 2019, 45, 740.
- 31C. Vaalma, G. A. Giffin, D. Buchholz, S. Passerini, J. Electrochem. Soc. 2016, 163, A1295.
- 32H. Kim, J. C. Kim, S. H. Bo, T. Shi, D. H. Kwon, G. Ceder, Adv. Energy Mater. 2017, 7, 1700098
- 33X. Wang, X. Xu, C. Niu, J. Meng, M. Huang, X. Liu, Z. Liu, L. Mai, Nano Lett. 2017, 17, 544.
- 34J. Meng, Z. Liu, C. Niu, X. Xu, X. Liu, G. Zhang, X. Wang, M. Huang, Y. Yu, L. Mai, J. Mater. Chem. A 2016, 4, 4893.
- 35H. Wang, S. Liu, Y. Ren, W. Wang, A. Tang, Energy Environ. Sci. 2012, 5, 6173.
- 36Y. Cai, J. Zhou, G. Fang, G. Cai, A. Pan, S. Liang, J. Power Sources 2016, 328, 241.
- 37M. Lu, K. F. Wang, H. D. Ke, Q. Hu, Z. H. Liu, H. R. Wu, Mater. Lett. 2018, 232, 224.
- 38M. Clites, J. L. Hart, M. L. Taheri, E. Pomerantseva, ACS Energy Lett. 2018, 3, 562.
- 39R. Baddour-Hadjean, J. P. Pereira-Ramos, C. Navone, M. Smirnov, Chem. Mater. 2008, 20, 1916.
- 40C. V. Subba Reddy, S. Mho, R. R. Kalluru, Q. L. Williams, J. Power Sources 2008, 179, 854.
- 41S. Hartung, N. Bucher, J. B. Franklin, A. M. Wise, L. Y. Lim, H. Y. Chen, J. N. Weker, M. E. Michel-Beyerle, M. F. Toney, M. Srinivasan, Adv. Energy Mater. 2016, 6, 1502336.
- 42V. Petkov, P. N. Trikalitis, E. S. Bozin, S. J. L. Billinge, T. Vogt, M. G. Kanatzidis, J. Am. Chem. Soc. 2002, 124, 10157.
- 43M. P. Yeager, W. Du, B. Bishop, M. Sullivan, W. Xu, D. Su, S. D. Senanayake, J. Hanson, X. Teng, ChemSusChem 2013, 6, 2231.
- 44L. A. D. Picciotto, M. M. Thackeray, W. I. F. David, P. G. Bruce, J. B. Goodenough, Mater. Res. Bull. 2015, 19, 1497.
- 45N. Kumada, S. Muramatu, F. Muto, N. Kinomura, S. Kikkawa, M. Koizumi, J. Solid State Chem. 1988, 73, 33.
- 46M. Sathiya, G. Rousse, K. Ramesha, C. P. Laisa, H. Vezin, M. T. Sougrati, M. L. Doublet, D. Foix, D. Gonbeau, W. Walker, A. S. Prakash, M. Ben Hassine, L. Dupont, J. M. Tarascon, Nat. Mater. 2013, 12, 827.