Compressed and Crumpled Porous Carbon Electrode for High Volumetric Performance Electrical Double-Layer Capacitors
Hongshuai Guo
Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 P. R. China
Search for more papers by this authorBing Ding
Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 P. R. China
Search for more papers by this authorXiaowan Dong
Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 P. R. China
Search for more papers by this authorShengyang Dong
Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 P. R. China
Search for more papers by this authorYadi Zhang
Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 P. R. China
Search for more papers by this authorJiajia Zhu
Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 P. R. China
Search for more papers by this authorHui Dou
Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 P. R. China
Search for more papers by this authorCorresponding Author
Xiaogang Zhang
Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 P. R. China
Search for more papers by this authorHongshuai Guo
Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 P. R. China
Search for more papers by this authorBing Ding
Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 P. R. China
Search for more papers by this authorXiaowan Dong
Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 P. R. China
Search for more papers by this authorShengyang Dong
Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 P. R. China
Search for more papers by this authorYadi Zhang
Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 P. R. China
Search for more papers by this authorJiajia Zhu
Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 P. R. China
Search for more papers by this authorHui Dou
Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 P. R. China
Search for more papers by this authorCorresponding Author
Xiaogang Zhang
Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 P. R. China
Search for more papers by this authorAbstract
The 2D carbon sheets have great potential for the construction of compact electrodes with high volumetric performance for electrical double-layer capacitors (EDLCs), by virtue of their excellent electrical conductivity, high exposed surface area, free of interpores, and unimpeded ion-diffusion channels. However, 2D nanosheets restack and aggregate during the preparation processes of electrodes, reducing available surface area, and limiting transport of ions. Herein, a facile and scalable method is presented to prepare highly porous crumple carbon balls (PCCBs) assembled by 2D carbon nanosheets. Such a unique nanostructure endows the PCCB electrode with large electrolyte-accessible surface area and short ion-diffusion pathways even when compressed at 40 MPa. Electrochemical evaluations in 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4) electrolyte indicate that the compressed PCCB electrodes still show superior gravimetric (103 F g−1) and volumetric capacitances (127 F cm−3) at 1 A g−1. The highest volumetric energy density of symmetrical EDLC based on compressed PCCB-based electrode is 53.9 Wh L−1. This work provides a new direction for the development of high volumetric energy density carbon-based EDLCs.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
ente201900209-sup-0001-SuppData-S1.doc1.6 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) A. Borenstein, O. Hanna, R. Attias, S. Luski, T. Brousse, D. Aurbach, J. Mater. Chem. A. 2017, 5, 12653; b) O. Barbieri, M. Hahn, A. Herzog, R. Kotz, Carbon 2005, 43, 1303; c) S. Bose, T. Kuila, A. K. Mishra, R. Rajasekar, N. H. Kim, J. H. Lee, J. Mater. Chem. 2012, 22, 767; d) X. L. Chen, R. Paul, L. M. Dai, Nat. Sci. Rev. 2017, 4, 453.
- 2a) J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P. L. Taberna, Science 2006, 313, 1760; b) E. Frackowiak, Q. Abbas, F. Beguin, J. Energy. Chem. 2013, 22, 226; c) E. Frackowiak, Phys. Chem. Chem. Phys. 2007, 9, 1774; d) A. Ghosh, Y. H. Lee, Chemsuschem 2012, 5, 480; e) Z. Chen, J. Sun, R. Bao, X. Sun, J. Zhang, L. Hou, C. Yuan, ACS Sustainable Chem. Eng. 2019, 7, 779; f) L. Hou, Z. Chen, Z. Zhao, X. Sun, J. Zhang, C. Yuan, ACS Appl. Energy Mater. 2019, 2, 548.
- 3a) G. L. Sun, L. Y. Ma, J. B. Ran, B. Li, X. Y. Shen, H. Tong, Electrochim. Acta 2016, 194, 168; b) J. Tang, J. Liu, C. Li, Y. Li, M. O. Tade, S. Dai, Y. Yamauchi, Angew. Chem., Int. Ed. 2015, 54, 588; c) D. Sheberla, J. C. Bachman, J. S. Elias, C.-J. Sun, Y. Shao-Horn, M. Dinca, Nat. Mater. 2017, 16, 220; d) Z. Wu, W. D. Wu, W. Liu, C. Selomulya, X. D. Chen, D. Zhao, Angew. Chem. Int. Ed. 2013, 52, 13764; e) Z.-A. Qiao, B. Guo, A. J. Binder, J. Chen, G. M. Veith, S. Dai, Nano Lett. 2013, 13, 207.
- 4a) C. Long, X. Chen, L. Jiang, L. Zhi, Z. Fan, Nano Energy 2015, 12, 141; b) M. Ghidiu, M. R. Lukatskaya, M. Q. Zhao, Y. Gogotsi, M. W. Barsoum, Nature 2014, 516, 78; c) Z. S. Wu, Y. Z. Tan, S. Zheng, S. Wang, K. Parvez, J. Qin, X. Shi, C. Sun, X. Bao, X. Feng, K. Mullen, J. Am. Chem. Soc. 2017, 139, 4506.
- 5a) C. Zhang, W. Lv, Y. Tao, Q.-H. Yang, Energy Environ. Sci. 2015, 8, 1390; b) C. X. Guo, C. M. Li, Energy Environ. Sci. 2011, 4, 4504; c) Y. Bu, T. Sun, Y. Cai, L. Du, O. Zhuo, L. Yang, Q. Wu, X. Wang, Z. Hu, Adv. Mater. 2017, 29, 1700479.
- 6C. Liu, X. Yan, F. Hu, G. Gao, G. Wu, X. Yang, Adv. Mater. 2018, 30, e1705713.
- 7a) Y. Lin, X. Han, C. J. Campbell, J.-W. Kim, B. Zhao, W. Luo, J. Dai, L. Hu, J. W. Connell, Adv. Funct. Mater. 2015, 25, 2920; b) Y. Xu, Z. Lin, X. Zhong, X. Huang, N. O. Weiss, Y. Huang, X. Duan, Nat. Commun. 2014, 5, 4554.
- 8a) J. H. Lee, N. Park, B. G. Kim, D. S. Jung, K. Im, J. Hur, J. W. Choi, ACS Nano 2013, 7, 9366; b) J. Luo, H. D. Jang, J. Huang, ACS Nano 2013, 7, 1464.
- 9a) Z. Niu, J. Chen, H. H. Hng, J. Ma, X. Chen, Adv. Mater. 2012, 24, 4144; b) Z. Wen, X. Wang, S. Mao, Z. Bo, H. Kim, S. Cui, G. Lu, X. Feng, J. Chen, Adv. Mater. 2012, 24, 5610; c) J. Wang, B. Ding, Y. Xu, L. Shen, H. Dou, X. Zhang, ACS Appl. Mater. Interfaces 2015, 7, 22284.
- 10a) D. H. Seo, Z. J. Han, S. Kumar, K. Ostrikov, Adv. Energy. Mater. 2013, 3, 1316; b) J. J. Yoo, K. Balakrishnan, J. Huang, V. Meunier, B. G. Sumpter, A. Srivastava, M. Conway, A. L. M. Reddy, J. Yu, R. Vajtai, P. M. Ajayan, Nano Lett. 2011, 11, 1423; c) J. Zhu, K. Sakaushi, G. Clavel, M. Shalom, M. Antonietti, T.-P. Fellinger, J. Am. Chem. Soc. 2015, 137, 5480; d) M. F. El-Kady, V. Strong, S. Dubin, R. B. Kaner, Science 2012, 335, 1326.
- 11a) F. Banhart, J. Kotakoski, A. V. Krasheninnikov, ACS Nano 2011, 5, 26; b) X. Han, M. R. Funk, F. Shen, Y.-C. Chen, Y. Li, C. J. Campbell, J. Dai, X. Yang, J.-W. Kim, Y. Liao, J. W. Connell, V. Barone, Z. Chen, Y. Lin, L. Hu, ACS Nano 2014, 8, 8255.
- 12A. Burke, Electrochim. Acta 2007, 53, 1083.
- 13G. P. Hao, A. H. Lu, W. Dong, Z. Y. Jin, X. Q. Zhang, J. T. Zhang, W. C. Li, Adv. Energy Mater. 2013, 3, 1421.
- 14C. Liu, Z. Yu, D. Neff, A. Zhamu, B. Z. Jang, Nano Lett. 2010, 10, 4863.
- 15M. Sevilla, A. B. Fuertes, ACS Nano 2014, 8, 5069.
- 16F. Kim, J. Y. Luo, R. Cruz-Silva, L. J. Cote, K. Sohn, J. X. Huang, Adv. Funct. Mater. 2010, 20, 2867.