Mo-Doped Cobalt Phosphide Nanosheets for Efficient Hydrogen Generation in an Alkaline Media
Xunhang Liu
Key Laboratory of Photonic and Electric Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025 China
Search for more papers by this authorCorresponding Author
Bo Wei
Department of Physics, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorRen Su
SynCat@Beijing, Synfuels China Technology Co. Ltd., Beijing, 101407 China
Search for more papers by this authorChenguang Zhao
Key Laboratory of Photonic and Electric Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025 China
Search for more papers by this authorDongmei Dai
Key Laboratory of Photonic and Electric Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025 China
Search for more papers by this authorXiao Ma
Key Laboratory of Photonic and Electric Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025 China
Search for more papers by this authorCorresponding Author
Lingling Xu
Key Laboratory of Photonic and Electric Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025 China
Search for more papers by this authorXunhang Liu
Key Laboratory of Photonic and Electric Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025 China
Search for more papers by this authorCorresponding Author
Bo Wei
Department of Physics, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorRen Su
SynCat@Beijing, Synfuels China Technology Co. Ltd., Beijing, 101407 China
Search for more papers by this authorChenguang Zhao
Key Laboratory of Photonic and Electric Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025 China
Search for more papers by this authorDongmei Dai
Key Laboratory of Photonic and Electric Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025 China
Search for more papers by this authorXiao Ma
Key Laboratory of Photonic and Electric Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025 China
Search for more papers by this authorCorresponding Author
Lingling Xu
Key Laboratory of Photonic and Electric Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025 China
Search for more papers by this authorAbstract
The development of high-active, low-cost, and robust electrocatalysts is vitally important for electrocatalytic water splitting. Herein, Mo-doped cobalt phosphide (Mo-CoP) nanosheets on carbon cloth are successfully prepared and evaluated for hydrogen evolution reaction (HER) catalyst. The Mo-CoP catalyst displays an excellent electrocatalytic activity and stability toward HER in 1 m KOH solution. Relatively low overpotentials of 49 and 120 mV are required to reach the current densities of 10 and 100 mA cm−2, respectively. Moreover, the Mo-CoP catalyst shows an exceptional stability with 24 h operation. The origin of improvement can be ascribed to Mo doping, which probably results in more active sites, higher electrical conductivity, and faster mass transfer. This work demonstrates a promising electrocatalyst for water electrolysis in an alkaline media and opens new possibilities for exploring water-splitting catalysts.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
ente201900021-sup-0001-SuppData-S1.docx1.1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, Chem. Soc. Rev. 2015, 44, 2060.
- 2Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, T. F. Jaramillo, Science 2017, 355, eaad4998.
- 3J. Wang, F. Xu, H. Jin, Y. Chen, Y. Wang, Adv. Mater. 2017, 29, 1605838.
- 4W. T. Hong, M. Risch, K. A. Stoerzinger, A. Grimaud, J. Suntivich, Y. Shao-Horn, Energy Environ. Sci. 2015, 8, 1404.
- 5S. Anantharaj, S. R. Ede, K. Sakthikumar, K. Karthick, S. Mishra, S. Kundu, ACS Catal. 2015, 6, 8069.
- 6I. Roger, M. A. Shipman, M. D. Symes, Nature Rev. Chem. 2017, 1, 0003.
- 7Y. Shi, B. Zhang, Chem. Soc. Rev. 2016, 45, 1781.
- 8J. H. Wang, W. Cui, Q. Liu, Z. C. Xing, A. M. Asiri, X. P. Sun, Adv. Mater. 2016, 28, 215.
- 9J. Chen, Y. Li, G. Sheng, L. Xu, H. Ye, X. Z. Fu, R. Sun, C. P. Wong, ChemCatChem 2018, 10, 2248.
- 10W. Kwong, E. Gracia-Espino, C. Lee, R. Sandström, T. Wågberg, J. Messinger, ChemSusChem 2017, 23, 4544.
- 11X. Wang, Y. V. Kolen'Ko, X. Q. Bao, K. Kovnir, L. Liu, Angew. Chem. Int. Ed. 2015, 54, 8188.
- 12Q. Liang, F. Shi, X. Xiao, X. Wu, K. Huang, S. H. Feng, ChemCatChem 2018, 10, 2179.
- 13J. J. Lu, L. S. Zhang, S. Y. Jing, L. Luo, S. B. Yin, Int. J. Hydrogen Energy 2017, 42, 5993.
- 14S. Y. Jing, L. S. Zhang, L. Luo, S. B. Yin, P. K. Shen, P. Tsiakaras, Appl. Catal. B-Environ. 2018, 224, 533.
- 15L. S. Zhang, J. J. Lu, S. B. Yin, L. Luo, S. Y. Jing, A. Brouzgou, J. H. Chen, P. K. Shen, P. Tsiakaras, Appl. Catal. B-Environ. 2018, 230, 58.
- 16E. J. Popczun, C. G. Read, C. W. Roske, N. S. Lewis, R. E. Schaak, Angew. Chem., Int. Ed. 2014, 53, 5427.
- 17Y. Pan, Y. Liu, Y. Lin, C. Liu, ACS Appl. Mater. Interfaces 2016, 8, 13890.
- 18D. H. Ha, M. Risch, B. L. Han, L. Giordano, K. P. C. Yao, Y. Shao-Horn, Nano Energy 2016, 29, 37.
- 19R. Zhang, C. Tang, R. Kong, G. Du, A. M. Asiri, L. Chen, X. P. Sun, Nanoscale 2017, 9, 4793.
- 20F. Zhang, M. Wei, J. Sui, C. Jin, Y. Luo, S. Y. Bie, R. Z. Yang, J. Alloys Compd. 2018, 750, 655.
- 21L. Bi, X. Gao, L. Zhang, D. Wang, X. Zou, T. F. Xie, ChemSusChem 2018, 11, 276.
- 22J. K. Kim, S. K. Park, Y. C. Kang, J. Alloys Compd. 2018, 763, 652.
- 23Q. W. Zhou, Z. H. Shen, C. Zhu, J. C. Li, Z. Y. Ding, P. Wang, F. Pan, Z. Zhang, H. X. Ma, S. Y. Wang, H. G. Zhang, Adv. Mater. 2018, 30, 1800140.
- 24C. Zhang, Y. Huang, Y. Yu, J. Zhang, S. Zhuo, B. Zhang, Chem. Sci. 2017, 8, 2769.
- 25L. Zhou, M. F. Shao, J. Li, S. Jiang, M. We, X. Duan, Nano Energy 2017, 41, 583.
- 26C. Guan, H. Wu, W. Xiao, X. Liu, W. Zang, H. Zhang, J. Ding, Y. P. Feng, S. J. Pennycook, J. Wang, Nano Energy 2018, 48, 73.
- 27X. Li, S. Li, A. Yoshida, S. Sirisomboonchai, K. Tang, Z. J. Zuo, A. Abudula, G. Q. Guan, Catal. Sci. Technol. 2018, 8, 4407.
- 28C. C. L. McCrory, S. Jung, J. C. Peters, T. F. Jaramillo, J. Am. Chem. Soc. 2013, 135, 16977.
- 29D. Q. Gao, J. Y. Zhang, T. T. Wang, W. Xiao, K. Tao, D. S. Xue, J. Ding, J. Mater. Chem. A 2016, 4, 17363.
- 30M. A. Lukowski, A. S. Daniel, C. R. English, F. Meng, A. Forticaux, R. J. Hamers, S. Jin, Energy Environ. Sci. 2014, 7, 2608.
- 31H. Liang, A. N. Gandi, D. H. Anjum, X. Wang, U. Schwingenschlogl, H. N. Alshareef, Nano Lett. 2016, 16, 7718.
- 32R. Zhang, X. Ren, S. Hao, R. X. Ge, Z. Liu, A. M. Asiri, X. P. Sun, J. Mater. Chem. A 2018, 6, 1985.
- 33E. J. Popczun, J. R. Mckone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S. Lewis, R. E. Schaak, J. Am. Chem. Soc. 2013, 135, 9267.
- 34J. X. Zhao, X. Ren, H. M. Ma, X. Sun, Y. Zhang, T. Yan, D. Wu, ACS Sustainable Chem. Eng 2017, 5, 10093.