Synergistic Effects of Mo2C-NC@CoxFey Core–Shell Nanoparticles in Electrocatalytic Overall Water Splitting Reaction
Shiping Wang
Faculty of Chemistry and Center for NanoIntegration (CENIDE), University of Duisburg-Essen, Essen, 45117 Germany
Search for more papers by this authorGeorg Bendt
Faculty of Chemistry and Center for NanoIntegration (CENIDE), University of Duisburg-Essen, Essen, 45117 Germany
Search for more papers by this authorSascha Saddeler
Faculty of Chemistry and Center for NanoIntegration (CENIDE), University of Duisburg-Essen, Essen, 45117 Germany
Search for more papers by this authorCorresponding Author
Stephan Schulz
Faculty of Chemistry and Center for NanoIntegration (CENIDE), University of Duisburg-Essen, Essen, 45117 Germany
Search for more papers by this authorShiping Wang
Faculty of Chemistry and Center for NanoIntegration (CENIDE), University of Duisburg-Essen, Essen, 45117 Germany
Search for more papers by this authorGeorg Bendt
Faculty of Chemistry and Center for NanoIntegration (CENIDE), University of Duisburg-Essen, Essen, 45117 Germany
Search for more papers by this authorSascha Saddeler
Faculty of Chemistry and Center for NanoIntegration (CENIDE), University of Duisburg-Essen, Essen, 45117 Germany
Search for more papers by this authorCorresponding Author
Stephan Schulz
Faculty of Chemistry and Center for NanoIntegration (CENIDE), University of Duisburg-Essen, Essen, 45117 Germany
Search for more papers by this authorAbstract
Transition metals (TMs) are highly investigated as nonprecious electrocatalysts for hydrogen evolution (HER) and oxygen evolution (OER) reactions. There is a strong demand for highly efficient and inexpensive catalysts for overall water splitting. Herein, the bimetallic CoxFey alloy nanoparticles encapsulated in a N-doped graphene shell containing molybdenum carbide (Mo2C) nanoparticles are synthesized by the pyrolysis of cobalt ferrite (CoxFe3−xO4) nanoparticles coated by melamine-formaldehyde resin cross-linked with molybdic acid. Molybdic acid not only serves as precursor for the formation of highly dispersed Mo2C nanoparticles in the N-doped graphene shell but also enhances the thermal stability of the organic shell, resulting in the formation of smaller CoxFey cores. The formation of Mo2C nanoparticles in the graphene shell is promoted by the CoxFe3−xO4 core. Interestingly, the synergistic presence of Mo2C nanoparticles not only enhances the HER activity of the material but also renders a partial breakage of the graphene shell, which increases the surface concentration of OER-active Co and therefore enhances the OER activity. The as-prepared TM-based materials serve as bifunctional catalysts for the overall water splitting and exhibit improved electrocatalytic performances compared to standard cells based on precious metals, with the potentials of 1.53 and 1.60 V at 10 and 20 mA cm−2 in alkaline media, respectively.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
ente201801121-sup-0001-SuppData-S1.pdf10.8 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) J. A. Turner, Science 1999, 285, 687; b) F. Cheng, J. Chen, Chem. Soc. Rev. 2012, 41, 2172; c) L. Schlapbach, Nature 2009, 460, 809.
- 2a) M. Ledendecker, S. Krick Calderon, C. Papp, H. P. Steinrück, M. Antonietti, M. Shalom, Angew. Chem. Int. Ed. 2015, 54, 12361; b) Q. Xiong, Y. Wang, P. F. Liu, L. R. Zheng, G. Wang, H. G. Yang, P. K. Wong, H. Zhang, H. Zhao, Adv. Mater. 2018, 30, 1801450; c) V. Raghuveer, A. Manthiram, A. J. Bard, J. Phys. Chem. B 2005, 109, 22909; d) K. Fugane, T. Mori, D. R. Ou, P. Yan, F. Ye, H. Yoshikawa, J. Drennan, Langmuir 2012, 28, 16692; e) A. Jackson, A. Strickler, D. Higgins, T. F. Jaramillo, Nanomaterials 2018, 8, 38; f) G. Zhao, K. Rui, S. Dou, and W. Sun, Adv. Funct. Mater. 2018, 28, 1803291.
- 3a) B. Y. Xia, Y. Yan, N. Li, H. B. Wu, X. W. Lou, X. Wang, Nat. Energy 2016, 1, 15006; b) P. Chen, T. Zhou, L. Xing, K. Xu, Y. Tong, H. Xie, L. Zhang, W. Yan, W. Chu, C. Wu, Y. Xie, Angew. Chem. Int. Ed. 2017, 56, 610; c) M. K. Debe, Nature 2012, 486, 43.
- 4a) X. Kong, K. Xu, C. Zhang, J. Dai, S. Norooz Oliaee, L. Li, X. Zeng, C. Wu, Z. Peng, ACS Catal. 2016, 6, 1487; b) Y. C. Lu, Z. Xu, H. A. Gasteiger, S. Chen, K. Hamad-Schifferli, Y. Shao-Horn, J. Am. Chem. Soc. 2010, 132, 12170; c) S. Drouet, J. Creus, V. Colliere, C. Amiens, J. Garcia-Anton, X. Sala, K. Philippot, Chem. Commun. 2017, 53, 11713; d) J. Mahmood, F. Li, S. M. Jung, M. S. Okyay, I. Ahmad, S. J. Kim, N. Park, H. Y. Jeong, J. B. Baek, Nat. Nanotech. 2017, 12, 441; e) C. Massue, X. Huang, A. Tarasov, C. Ranjan, S. Cap, R. Schlögl, ChemSusChem 2017, 10, 1958.
- 5a) D. Escalera-Lopez, Y. Niu, J. Yin, K. Cooke, N. V. Rees, R. E. Palmer, ACS Catal. 2016, 6, 6008; b) P. D. Tran, T. V. Tran, M. Orio, S. Torelli, Q. D. Truong, K. Nayuki, Y. Sasaki, S. Y. Chiam, R. Yi, I. Honma, J. Barber, V. Artero, Nat. Mater. 2016, 15, 640; c) B. Cao, G. M. Veith, J. C. Neuefeind, R. R. Adzic, P. G. Khalifah, J. Am. Chem. Soc. 2013, 135, 19186; d) K. Xu, P. Chen, X. Li, Y. Tong, H. Ding, X. Wu, W. Chu, Z. Peng, C. Wu, Y. Xie, J. Am. Chem. Soc. 2015, 137, 4119; e) X. Xu, Y. Chen, W. Zhou, Z. Zhu, C. Su, M. Liu, Z. Shao, Adv. Mater. 2016, 28, 6442; f) Y. Zhu, W. Zhou, Z. G. Chen, Y. Chen, C. Su, M. O. Tade, Z. Shao, Angew. Chem. Int. Ed. 2015, 54, 3897; g) C. Hu, L. Zhang, Z. J. Zhao, J. Luo, J. Shi, Z. Huang, J. Gong, Adv. Mater. 2017, 29, 1701820; h) R. Subbaraman, D. Tripkovic, K. C. Chang, D. Strmcnik, A. P. Paulikas, P. Hirunsit, M. Chan, J. Greeley, V. Stamenkovic, N. M. Markovic, Nat. Mater. 2012, 11, 550; i) H. Fei, J. Dong, Y. Feng, C. S. Allen, C. Wan, B. Volosskiy, M. Li, Z. Zhao, Y. Wang, H. Sun, P. An, W. Chen, Z. Guo, C. Lee, D. Chen, I. Shakir, M. Liu, T. Hu, Y. Li, A. I. Kirkland, X. Duan, Y. Huang, Nat. Catal. 2018, 1, 63.
- 6a) Y. Fan, S. Ida, A. Staykov, T. Akbay, H. Hagiwara, J. Matsuda, K. Kaneko, T. Ishihara, Small 2017, 13, 1700099; b) P. Chen, K. Xu, Z. Fang, Y. Tong, J. Wu, X. Lu, X. Peng, H. Ding, C. Wu, Y. Xie, Angew. Chem. Int. Ed. 2015, 54, 14710; c) X. Fan, Z. Peng, R. Ye, H. Zhou, X. Guo, ACS nano 2015, 9, 7407; d) S. Cobo, J. Heidkamp, P. A. Jacques, J. Fize, V. Fourmond, L. Guetaz, B. Jousselme, V. Ivanova, H. Dau, S. Palacin, M. Fontecave, V. Artero, Nat. Mater. 2012, 11, 802; e) L. Trotochaud, S. L. Young, J. K. Ranney, S. W. Boettcher, J. Am. Chem. Soc. 2014, 136, 6744; f) S. E. Fosdick, S. P. Berglund, C. B. Mullins, R. M. Crooks, ACS Catal. 2014, 4, 1332; g) M.-Q. Wang, C. Ye, M. Wang, T.-H. Li, Y.-N. Yu, S.-J. Bao, Energy Storage Mater. 2018, 11, 112.
- 7a) Y. Tong, P. Chen, T. Zhou, K. Xu, W. Chu, C. Wu, Y. Xie, Angew. Chem. Int. Ed. 2017, 56, 7121; b) H. Jin, J. Wang, D. Su, Z. Wei, Z. Pang, Y. Wang, J. Am. Chem. Soc. 2015, 137, 2688; c) Y. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, Chem. Soc. Rev. 2015, 44, 2060.
- 8a) M. S. Burke, L. J. Enman, A. S. Batchellor, S. Zou, S. W. Boettcher, Chem. Mater. 2015, 27, 7549; b) R. L. Doyle, I. J. Godwin, M. P. Brandon, M. E. Lyons, Phys. Chem. Chem. Phys. 2013, 15, 13737; c) M. Bajdich, M. Garcia-Mota, A. Vojvodic, J. K. Norskov, A. T. Bell, J. Am. Chem. Soc. 2013, 135, 13521.
- 9a) Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Nat. Mater. 2011, 10, 780; b) X. Yan, Y. Jia, J. Chen, Z. Zhu, X. Yao, Adv. Mater. 2016, 28, 8771; c) Y. Liang, H. Wang, P. Diao, W. Chang, G. Hong, Y. Li, M. Gong, L. Xie, J. Zhou, J. Wang, T. Z. Regier, F. Wei, H. Dai, J. Am. Chem. Soc. 2012, 134, 15849.
- 10a) J. Du, C. Chen, F. Cheng, J. Chen, Inorg. Chem. 2015, 54, 5467; b) X. Zou, X. Huang, A. Goswami, R. Silva, B. R. Sathe, E. Mikmekova, T. Asefa, Angew. Chem. Int. Ed. 2014, 53, 4372; c) C. Lu, D. Tranca, J. Zhang, F. N. Rodri Guez Hernandez, Y. Su, X. Zhuang, F. Zhang, G. Seifert, X. Feng, ACS Nano 2017, 11, 3933.
- 11a) G. Nam, J. Park, M. Choi, P. Oh, S. Park, M. G. Kim, N. Park, J. Cho, J. S. Lee, ACS Nano 2015, 9, 6493; b) J. Deng, P. Ren, D. Deng, X. Bao, Angew. Chem. Int. Ed. 2015, 54, 2100; c) M. Tavakkoli, T. Kallio, O. Reynaud, A. G. Nasibulin, C. Johans, J. Sainio, H. Jiang, E. I. Kauppinen, K. Laasonen, Angew. Chem. Int. Ed. 2015, 54, 4535; d) T. Li, Y. Lu, S. Zhao, Z.-D. Gao, Y.-Y. Song, J. Mater. Chem. A 2018, 6, 3730.
- 12a) S. Wang, J. Wang, M. Zhu, X. Bao, B. Xiao, D. Su, H. Li, Y. Wang, J. Am. Chem. Soc. 2015, 137, 15753; b) M. Kim, S. Kim, D. Song, S. Oh, K. J. Chang, E. Cho, Appl. Catal. B: Environ. 2018, 227, 340; c) X. Xu, F. Nosheen, X. Wang, Chem. Mater. 2016, 28, 6313; d) Z. Y. Yu, Y. Duan, M. R. Gao, C. C. Lang, Y. R. Zheng, S. H. Yu, Chem. Sci. 2017, 8, 968; e) J. Jiang, Q. Liu, C. Zeng, L. Ai, J. Mater. Chem. A 2017, 5, 16929; f) X. Zhang, L. Huang, Y. Han, M. Xu, S. Dong, Nanoscale 2017, 9, 5583; g) F. Yu, Y. Gao, Z. Lang, Y. Ma, L. Yin, J. Du, H. Tan, Y. Wang, Y. Li, Nanoscale 2018, 10, 6080.
- 13a) H. Vrubel, X. Hu, Angew. Chem. Int. Ed. 2012, 51, 12703; b) C. Wan, Y. N. Regmi, B. M. Leonard, Angew. Chem. Int. Ed. 2014, 53, 6407; c) R. Ma, Y. Zhou, Y. Chen, P. Li, Q. Liu, J. Wang, Angew. Chem. Int. Ed. 2015, 54, 14723; d) F. Li, X. Zhao, J. Mahmood, M. S. Okyay, S. M. Jung, I. Ahmad, S. J. Kim, G. F. Han, N. Park, J. B. Baek, ACS Nano 2017, 11, 7527; e) J. S. Li, Y. Wang, C. H. Liu, S. L. Li, Y. G. Wang, L. Z. Dong, Z. H. Dai, Y. F. Li, Y. Q. Lan, Nat. Commun. 2016, 7, 11204; f) M. Miao, J. Pan, T. He, Y. Yan, B. Y. Xia, X. Wang, Chem. Eur. J. 2017, 23, 10947.
- 14X. Liu, M. Antonietti, Adv. Mater. 2013, 25, 6284.
- 15a) J.-S. Li, Y.-J. Tang, C.-H. Liu, S.-L. Li, R.-H. Li, L.-Z. Dong, Z.-H. Dai, J.-C. Bao, Y.-Q. Lan, J. Mater. Chem. A 2016, 4, 1202; b) M. Gong, Y. Li, H. Wang, Y. Liang, J. Z. Wu, J. Zhou, J. Wang, T. Regier, F. Wei, H. Dai, J. Am. Chem. Soc. 2013, 135, 8452; c) X. Fan, Y. Liu, S. Chen, J. Shi, J. Wang, A. Fan, W. Zan, S. Li, W. A. Goddard 3rd, X. M. Zhang, Nat. Commun. 2018, 9, 1809; d) D. Friebel, M. W. Louie, M. Bajdich, K. E. Sanwald, Y. Cai, A. M. Wise, M. J. Cheng, D. Sokaras, T. C. Weng, R. Alonso-Mori, R. C. Davis, J. R. Bargar, J. K. Norskov, A. Nilsson, A. T. Bell, J. Am. Chem. Soc. 2015, 137, 1305.
- 16a) F. Solymosi, J. Cserényi, A. Szöke, T. Bánsági, A. Oszkó, J. Catal. 1997, 165, 150; b) M. J. Ledoux, C. P. Huu, J. Guille, H. Dunlop, J. Catal. 1992, 134, 383; c) T. P. St. Clair, S. T. Oyama, D. F. Cox, S. Otani, Y. Ishizuka, R.-L. Lo, K. Fukui, Y. Iwasawa, Surf. Sci. 1999, 426, 187.
- 17J. Wang, M. Castonguay, J. Deng, P. H. McBreen, Surf. Sci. 1997, 374, 197.
- 18K. Hamrin, G. Johansson, A. Fahlman, C. Nordling, J. Phys. Chem. Solids 1969, 30, 1835.
- 19P. Tan, J. Catal. 2016, 338, 21.
- 20Z. H. Xue, H. Su, Q. Y. Yu, B. Zhang, H. H. Wang, X. H. Li, J. S. Chen, Adv. Energy Mater. 2017, 7, 1602355.
- 21K. Oshikawa, M. Nagai, S. Omi, J. Phys. Chem. B 2001, 105, 9124.
- 22M. Xiang, D. Li, W. Li, B. Zhong, Y. Sun, Catal. Commun. 2007, 8, 513.
- 23D. Zhang, J. Li, J. Luo, P. Xu, L. Wei, D. Zhou, W. Xu, D. Yuan, Nanotechnology 2018, 29, 245402.
- 24T. Tang, W. J. Jiang, S. Niu, N. Liu, H. Luo, Y. Y. Chen, S. F. Jin, F. Gao, L. J. Wan, J. S. Hu, J. Am. Chem. Soc. 2017, 139, 8320.
- 25L. Yang, H. Qi, C. Zhang, X. Sun, Nanotechnology 2016, 27, 23LT01.
- 26a) K. Chakrapani, G. Bendt, H. Hajiyani, T. Lunkenbein, M. T. Greiner, L. Masliuk, S. Salamon, J. Landers, R. Schlögl, H. Wende, R. Pentcheva, S. Schulz, M. Behrens, ACS Catal. 2018, 8, 1259; b) K. Chakrapani, G. Bendt, H. Hajiyani, I. Schwarzrock, T. Lunkenbein, S. Salamon, J. Landers, H. Wende, R. Schlögl, R. Pentcheva, M. Behrens, S. Schulz, Chem. Cat. Chem. 2017, 9, 2988.
- 27T. E. Klimova, D. Valencia, J. Arturo Mendoza-Nieto, P. Hernández-Hipólito, J. Catal. 2013, 304, 29.