Synthesis and Electrochemical Research of Milled Antimony and Red Phosphorus Hybrid Inlaid with Graphene Sheets as Anodes for Lithium–Sodium Storage
Yang Liu
Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006 P. R. China
Search for more papers by this authorCorresponding Author
Qiang Ru
Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006 P. R. China
Search for more papers by this authorYuqing Gao
Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006 P. R. China
Search for more papers by this authorPing Gao
Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006 P. R. China
Search for more papers by this authorFuming Chen
Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006 P. R. China
Search for more papers by this authorLingzhi Zhao
Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006 P. R. China
Guangdong Provincial Engineering Technology Research Center for Low Carbon and Advanced Energy Materials, Guangzhou, 510631 P. R. China
Search for more papers by this authorXianhua Hou
Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006 P. R. China
Search for more papers by this authorYang Liu
Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006 P. R. China
Search for more papers by this authorCorresponding Author
Qiang Ru
Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006 P. R. China
Search for more papers by this authorYuqing Gao
Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006 P. R. China
Search for more papers by this authorPing Gao
Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006 P. R. China
Search for more papers by this authorFuming Chen
Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006 P. R. China
Search for more papers by this authorLingzhi Zhao
Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006 P. R. China
Guangdong Provincial Engineering Technology Research Center for Low Carbon and Advanced Energy Materials, Guangzhou, 510631 P. R. China
Search for more papers by this authorXianhua Hou
Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006 P. R. China
Search for more papers by this authorAbstract
Antimony and red phosphorus (RP) hybrid is harvested via a facile mechanical milling strategy. Simultaneously, graphene sheets are introduced to boost the electronic transmission and mitigate the agglomeration of particles. In contrast to pristine Sb and RP electrodes, Sb/P/C hybrid affords comparably promising electrochemical performances. As anodes for lithium-ion batteries, Sb/P/C electrode depicts a reversible capacity of 869 mAh g−1 under 200 mA g−1 after 50 cycles and an excellent rate stability such as 452 mAh g−1 at 3200 mA g−1. When used for sodium-ion batteries, the hybrid also shows moderate capacities of 544.8 and 511 mAh g−1 at the current of 50 and 200 mA g−1 after 50 cycles, respectively. These excellent properties can be ascribed to the synergetic effect of decreased particle size of milled Sb/P/C, large contact area, adequate energy storage sites, and enhanced electrical conductivity.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1M. Li, J. Lu, Z. Chen, K. Amine, Adv. Mater. 2018, 30, 24.
- 2C. Wu, S. X. Dou, Y. Yu, Small 2018, 14, e1703671.
- 3A. O. Raji, R. Villegas Salvatierra, N. D. Kim, X. Fan, Y. Li, G. A. L. Silva, J. Sha, J. M. Tour, ACS Nano 2017, 11, 6362.
- 4A. Mauger, M. Armand, C. M. Julien, K. Zaghib, J. Power Sources 2017, 353, 333.
- 5D. Lin, Y. Liu, Y. Cui, Nat. Nanotechnol. 2017, 12, 194.
- 6T. T. Zuo, X. W. Wu, C. P. Yang, Y. X. Yin, H. Ye, N. W. Li, Y. G. Guo, Adv. Mater. 2017, 29, 1700389.
- 7Y. Kwon, K. Kim, H. Park, J. W. Shin, R. Ryoo, J. Phys. Chem. C 2018, 122, 4955.
- 8G. Zheng, C. Wang, A. Pei, J. Lopez, F. Shi, Z. Chen, A. D. Sendek, H.-W. Lee, Z. Lu, H. Schneider, M. M. Safont-Sempere, S. Chu, Z. Bao, Y. Cui, ACS Energy Lett. 2016, 1, 1247.
- 9L. Gao, S. Chen, H. Zhang, Y. Zou, X. She, D. Yang, Q. Zhao, X. Zhao, Int. J. Hydrogen Energy 2018, 43, 13904.
- 10X. K. Zhang, P. Wu, L. Jiang, X. F. Zhang, H. X. Shi, X. S. Zhu, S. H. Wei, Y. M. Zhou, Appl. Surf. Sci. 2018, 444, 448.
- 11S. Shi, Z. Li, Y. Sun, B. Wang, Q. Liu, Y. Hou, S. Huang, J. Huang, Y. Zhao, Nano Energy 2018, 48, 510.
- 12D. Zhou, L.-Z. Fan, J. Mater. Chem. A 2018, 6, 2139.
- 13Y. Xu, B. Peng, F. M. Mulder, Adv. Energy Mater. 2018, 8, 1701847.
- 14B. Wang, G. Wang, H. Wang, J. Bai, ChemNanoMat 2018, 4, 924.
- 15G. Zou, H. Hou, P. Ge, Z. Huang, G. Zhao, D. Yin, X. Ji, Small 2018, 14, 1702648.
- 16J. Mao, T. Zhou, Y. Zheng, H. Gao, H. K. Liu, Z. Guo, J. Mater. Chem. A 2018, 6, 3284.
- 17H. Gao, J. Niu, C. Zhang, Z. Peng, Z. Zhang, ACS Nano 2018, 12, 3568.
- 18X. Zhang, P. Li, R. Zang, S. Wang, Y. Zhu, C. Li, G. Wang, Chem. Asian J. 2017, 12, 116.
- 19S.-O. Kim, A. Manthiram, Chem. Mater. 2016, 28, 5935.
- 20M. C. Stan, R. Klöpsch, A. Bhaskar, J. Li, S. Passerini, M. Winter, Adv. Energy Mater. 2013, 3, 231.
- 21J. Li, L. Shi, J. Gao, G. Zhang, Chemistry 2018, 24, 1253.
- 22Y. Fu, Q. Wei, G. Zhang, S. Sun, Adv. Energy Mater. 2018, 8, 1703058.
- 23M. Walter, R. Erni, M. V. Kovalenko, Sci. Rep. 2015, 5, 8418.
- 24Y. S. Mun, Y. Yoon, J. Hur, M. S. Park, J. Bae, J. H. Kim, Y. S. Yoon, I. S. Yoo, S. G. Lee, I. T. Kim, J. Power Sources 2017, 362, 115.
- 25N. Wang, Z. Bai, Y. Qian, J. Yang, ACS Appl. Mater. Interfaces 2017, 9, 447.
- 26Y. B. Zhao, A. Manthiram, Chem. Mater. 2015, 27, 3096.
- 27H. Wang, X. Wu, X. Qi, W. Zhao, Z. Ju, Mater. Res. Bull. 2018, 103, 32.
- 28X. Wu, W. Zhao, H. Wang, X. Qi, Z. Xing, Q. Zhuang, Z. Ju, J. Power Sources 2018, 378, 460.
- 29J. Liu, L. Yu, C. Wu, Y. Wen, K. Yin, F. K. Chiang, R. Hu, J. Liu, L. Sun, L. Gu, J. Maier, Y. Yu, M. Zhu, Nano Lett. 2017, 17, 2034.
- 30T. Xu, D. H. Li, S. Chen, Y. Y. Sun, H. W. Zhang, Y. Z. Xia, D. J. Yang, Chem. Eng. J. 2018, 345, 604.
- 31Q. Xia, W. Li, Z. Miao, S. Chou, H. Liu, Nano Res. 2017, 10, 4055.
- 32N. Yabuuchi, Y. Matsuura, T. Ishikawa, S. Kuze, J.-Y. Son, Y.-T. Cui, H. Oji, S. Komaba, ChemElectroChem 2014, 1, 580.
- 33M. Dahbi, N. Yabuuchi, M. Fukunishi, K. Kubota, K. Chihara, K. Tokiwa, X.-F. Yu, H. Ushiyama, K. Yamashita, J.-Y. Son, Y.-T. Cui, H. Oji, S. Komaba, Chem. Mater. 2016, 28, 1625.
- 34W. Li, Z. Yang, M. Li, Y. Jiang, X. Wei, X. Zhong, L. Gu, Y. Yu, Nano Lett. 2016, 16, 1546.
- 35J. Wang, J. Yang, W. Yin, S.-I. Hirano, J. Mater. Chem. A 2017, 5, 20623.
- 36H. Gao, J. Niu, C. Zhang, Z. Peng, Z. Zhang, ACS Nano 2018, 12, 3568.
- 37W. Li, Z. Yang, Y. Jiang, Z. Yu, L. Gu, Y. Yu, Carbon 2014, 78, 455.
- 38L. Pei, Q. Zhao, C. Chen, J. Liang, J. Chen, ChemElectroChem 2015, 2, 1652.
- 39S. Kaushik, J. Hwang, K. Matsumoto, Y. Sato, R. Hagiwara, ChemElectroChem 2018, 5, 1340.
- 40M. Zhang, R. Hu, J. Liu, L. Ouyang, J. Liu, L. Yang, M. Zhu, Electrochem. Commun. 2017, 77, 85.
- 41K. Zhang, M. Park, J. Zhang, G.-H. Lee, J. Shin, Y.-M. Kang, Nano Res. 2017, 10, 4337.
- 42Z. Li, L. Zhang, X. Ge, C. Li, S. Dong, C. Wang, L. Yin, Nano Energy 2017, 32, 494.