A Critical Review on Hemicellulose Pyrolysis
Correction(s) for this article
-
Corrigendum: A Critical Review on Hemicellulose Pyrolysis
- Volume 5Issue 1Energy Technology
- pages: 216-216
- First Published online: November 10, 2016
Dr. Xiaowei Zhou
Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208 USA
Search for more papers by this authorDr. Wenjun Li
Corporate Strategic Research, ExxonMobil Research and Engineering Company, 1545 US Route 22 East, Annandale, NJ, 08801 USA
Search for more papers by this authorDr. Ross Mabon
Corporate Strategic Research, ExxonMobil Research and Engineering Company, 1545 US Route 22 East, Annandale, NJ, 08801 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Linda J. Broadbelt
Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208 USA
Search for more papers by this authorDr. Xiaowei Zhou
Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208 USA
Search for more papers by this authorDr. Wenjun Li
Corporate Strategic Research, ExxonMobil Research and Engineering Company, 1545 US Route 22 East, Annandale, NJ, 08801 USA
Search for more papers by this authorDr. Ross Mabon
Corporate Strategic Research, ExxonMobil Research and Engineering Company, 1545 US Route 22 East, Annandale, NJ, 08801 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Linda J. Broadbelt
Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208 USA
Search for more papers by this authorAbstract
Fast pyrolysis is a promising thermochemical technology that breaks down renewable and abundant lignocellulosic biomass into a primary liquid product (bio-oil) in seconds. The bio-oil can then be potentially catalytically upgraded into transportation fuels and multiple commodity chemicals. Hemicellulose is one of the three major components of lignocellulosic biomass and is characterized as a group of cell wall polysaccharides that are neither cellulose nor pectin. The composition and structural features of hemicellulose (mixture of different heterogeneous polysaccharides) and different specific hemicellulose polysaccharides are reviewed. Particular focus is then given to reviewing the status of hemicellulose pyrolysis in terms of experimental investigations, reaction mechanisms, and kinetic modeling. For each aspect, recent results, challenges, and future prospects are addressed.
References
- 1
- 1aD. Carpenter, T. L. Westover, S. Czernik, W. Jablonski, Green Chem. 2014, 16, 384–406;
- 1bE. L. Kunkes, D. A. Simonetti, R. M. West, J. C. Serrano-Ruiz, C. A. Gärtner, J. A. Dumesic, Science 2008, 322, 417–421;
- 1cT. P. Vispute, H. Zhang, A. Sanna, R. Xiao, G. W. Huber, Science 2010, 330, 1222–1227;
- 1dM. S. Mettler, D. G. Vlachos, P. J. Dauenhauer, Energy Environ. Sci. 2012, 5, 7797–7809;
- 1eS. P. S. Chundawat, G. T. Beckham, M. E. Himmel, B. E. Dale, Annu. Rev. Chem. Biomol. Eng. 2011, 2, 121–145;
- 1fB. Pecha, M. Garcia-Perez, Bioenergy (Ed.: ), Academic, Boston, 2015, pp. 413–442.
10.1016/B978-0-12-407909-0.00026-2 Google Scholar
- 2
- 2a“Looking back at the first half year of commercial scale pyrolysis oil production at Empyro”: G. Muggen in tcbiomass2015 (Chicago, IL), 2015 http://www.gastechnology.org/tcbiomass/tcb2015/Muggen_Gerhard-Presentation-tcbiomass2015.pdf;
- 2b“Production of transportation fuels by co-processing biomass-derived pyrolysis oils in a petroleum refinery fluid catalytic cracking unit”: S. Frey in tcbiomass2015 (Chicago, IL), 2015 http://www.gastechnology.org/tcbiomass/tcb2015/Frey_Stan-Presentation-tcbiomass2015.pdf;
- 2cM. Bertero, U. Sedran, Recent Advances in Thermo-Chemical Conversion of Biomass (Eds.: ), Elsevier, Boston, 2015, pp. 355–381.
10.1016/B978-0-444-63289-0.00013-2 Google Scholar
- 3
- 3aE. G. Baker, D. C. Elliott, Research in Thermochemical Biomass Conversion (Eds.: ), Springer, Dordrecht, 1988, pp. 883–895;
10.1007/978-94-009-2737-7_67 Google Scholar
- 3bD. A. Ruddy, J. A. Schaidle, J. R. Ferrell III, J. Wang, L. Moens, J. E. Hensley, Green Chem. 2014, 16, 454–490;
- 3cR. K. Sharma, N. N. Bakhshi, Energy Fuels 1993, 7, 306–314;
- 3dD. M. Alonso, S. G. Wettstein, J. A. Dumesic, Chem. Soc. Rev. 2012, 41, 8075–8098;
- 3eJ. Q. Bond, A. A. Upadhye, H. Olcay, G. A. Tompsett, J. Jae, R. Xing, D. M. Alonso, D. Wang, T. Zhang, R. Kumar, A. Foster, S. M. Sen, C. T. Maravelias, R. Malina, S. R. H. Barrett, R. Lobo, C. E. Wyman, J. A. Dumesic, G. W. Huber, Energy Environ. Sci. 2014, 7, 1500–1523.
- 4S. V. Vassilev, D. Baxter, L. K. Andersen, C. G. Vassileva, Fuel 2010, 89, 913–933.
- 5
- 5aS. E. Lebo, J. D. Gargulak, T. J. McNally, Kirk-Othmer Encyclopedia of Chemical Technology, Wiley, Hoboken, 2000;
- 5bA. W. Pelzer, M. R. Sturgeon, A. J. Yanez, G. Chupka, M. H. O'Brien, R. Katahira, R. D. Cortright, L. Woods, G. T. Beckham, L. J. Broadbelt, ACS Sustainable Chem. Eng. 2015, 3, 1339–1347.
- 6N. Obel, L. Neumetzler, M. Pauly, The Expanding Cell, Vol. 6 (Eds.: ), Springer, Berlin, 2007, pp. 57–88.
10.1007/7089_2006_071 Google Scholar
- 7M. A. O'Neill, W. S. York, The Plant Cell Wall (Ed.: ), Blackwell, Oxford, 2003, pp. 1–54.
- 8
- 8aJ. Vogel, Curr. Opin. Plant Biol. 2008, 11, 301–307;
- 8bC. W. Xiao, C. T. Anderson, Front. Plant Sci. 2013, 4, 1–11;
- 8cD. Mohnen, Curr. Opin. Plant Biol. 2008, 11, 266–277.
- 9A. Ebringerová, Z. Hromádková, T. Heinze, Polysaccharides I, Vol. 186 (Ed.: ), Springer, Berlin, 2005, pp. 1–67.
- 10H. V. Scheller, P. Ulvskov, Annu. Rev. Plant Biol. 2010, 61, 263–289.
- 11
- 11aT. E. Timell, N. Y. Syracuse, Wood Sci. Technol. 1967, 1, 45–70;
- 11bN. C. Carpita, Annu. Rev. Plant Physiol. Plant Mol. Biol. 1996, 47, 445–476;
- 11cF. X. Collard, J. Blin, Renewable Sustainable Energy Rev. 2014, 38, 594–608;
- 11dF. Peng, J. L. Ren, F. Xu, R. C. Sun, Sustainable Production of Fuels, Chemicals, and Fibers from Forest Biomass, Vol. 1067, ACS, Washington, D.C., 2011, pp. 219–259;
10.1021/bk-2011-1067.ch009 Google Scholar
- 11eF. M. Gírio, C. Fonseca, F. Carvalheiro, L. C. Duarte, S. Marques, R. Bogel-Łukasik, Bioresour. Technol. 2010, 101, 4775–4800;
- 11fJ. M. Labavitch, P. M. Ray, Phytochemistry 1978, 17, 933–937;
- 11gM. Pauly, S. Gille, L. Liu, N. Mansoori, A. de Souza, A. Schultink, G. Xiong, Planta 2013, 238, 627–642;
- 11hR. C. Pettersen, The Chemistry of Solid Wood, Vol. 207, ACS, Washington, D.C., 1984, pp. 57–126;
10.1021/ba-1984-0207.ch002 Google Scholar
- 11iN. Sella Kapu, H. L. Trajano, Biofuels Bioprod. Biorefin. 2014, 8, 857–870;
- 11jO. Theander, Fundamentals of Thermochemical Biomass Conversion (Eds.: ), Springer, Dordrecht, 1985, pp. 35–60;
10.1007/978-94-009-4932-4_2 Google Scholar
- 11kH. Pereira, J. Graça, J. C. Rodrigues, Wood Quality and its Biological Basis (Eds.: ), Blackwell, Oxford, 2003, pp. 53–86;
- 11lR. Alén, Forest Products Chemistry (Ed.: ), Fapet Oy, Helsinki, 2000, pp. 12–57;
- 11mF. Peng, P. Peng, F. Xu, R. C. Sun, Biotechnol. Adv. 2012, 30, 879–903.
- 12
- 12aH. Yang, R. Yan, H. Chen, D. H. Lee, C. Zheng, Fuel 2007, 86, 1781–1788;
- 12bC. Dong, Z. Zhang, Q. Lu, Y. Yang, Energy Convers. Manage. 2012, 57, 49–59;
- 12cG. Lyu, S. Wu, H. Zhang, Front. Energy Res. 2015, DOI: 10.3389/fenrg.2015.00028;
- 12dS. R. Wang, B. Ru, G. X. Dai, W. X. Sun, K. Z. Qiu, J. S. Zhou, Bioresour. Technol. 2015, 190, 211–218;
- 12eT. T. Qu, W. J. Guo, L. H. Shen, J. Xiao, K. Zhao, Ind. Eng. Chem. Res. 2011, 50, 10424–10433;
- 12fG. J. Lv, S. B. Wu, R. Lou, Bioresources 2010, 5, 2051–2062;
- 12gJ. Zhang, Y. S. Choi, C. G. Yoo, T. H. Kim, R. C. Brown, B. H. Shanks, ACS Sustainable Chem. Eng. 2015, 3, 293–301;
- 12hF. Carvalheiro, T. Silva-Fernandes, L. Duarte, F. Gírio, Appl. Biochem. Biotechnol. 2009, 153, 84–93;
- 12iM. H. Sipponen, V. Pihlajaniemi, S. Sipponen, O. Pastinen, S. Laakso, RSC Adv. 2014, 4, 23177–23184;
- 12jD. A. Cantero, C. Martinez, M. D. Bermejo, M. J. Cocero, Green Chem. 2015, 17, 610–618;
- 12kG. Dorez, L. Ferry, R. Sonnier, A. Taguet, J. M. Lopez-Cuesta, J. Anal. Appl. Pyrolysis 2014, 107, 323–331;
- 12lL. Desharnais, F. Du, N. Brosse, Ind. Eng. Chem. Res. 2011, 50, 14217–14220;
- 12mN. Brosse, A. Dufour, X. Z. Meng, Q. N. Sun, A. Ragauskas, Biofuel. Bioprod. Bior. 2012, 6, 580–598;
- 12nA. A. Boateng, H. G. Jung, P. R. Adler, Fuel 2006, 85, 2450–2457;
- 12oC. A. Mullen, A. A. Boateng, Energy Fuels 2008, 22, 2104–2109.
- 13P. R. Patwardhan, R. C. Brown, B. H. Shanks, ChemSusChem 2011, 4, 636–643.
- 14L. V. A. Gurgel, K. Marabezi, M. D. Zanbom, A. A. D. Curvelo, Ind. Eng. Chem. Res. 2012, 51, 1173–1185.
- 15M. J. Taherzadeh, R. Eklund, L. Gustafsson, C. Niklasson, G. Liden, Ind. Eng. Chem. Res. 1997, 36, 4659–4665.
- 16C. Di Blasi, C. Branca, A. Galgano, Ind. Eng. Chem. Res. 2010, 49, 2658–2671.
- 17A. Sluiter, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, Technical Report NREL/TP-510-42619, 2008 http://www.nrel.gov/docs/gen/fy08/42619.pdf.
- 18
- 18aS. R. Wang, B. Ru, H. Z. Lin, W. X. Sun, Fuel 2015, 150, 243–251;
- 18bA. Lozhechnikova, D. Dax, J. Vartiainen, S. Willfor, C. L. Xu, M. Osterberg, Carbohydr. Polym. 2014, 110, 163–172.
- 19R. Montgomery, F. Smith, H. C. Srivastava, J. Am. Chem. Soc. 1956, 78, 2837–2839.
- 20
- 20aY. Peng, S. Wu, J. Anal. Appl. Pyrolysis 2010, 88, 134–139;
- 20bJ. M. Igartuburu, E. Pando, F. Rodriguez-Luis, A. Gil-Serrano, J. Nat. Prod. 1998, 61, 876–880.
- 21
- 21aD. J. Schell, M. F. Ruth, M. P. Tucker, Appl. Biochem. Biotechnol. 1999, 77, 67–81;
- 21bR. F. H. Dekker, A. F. A. Wallis, Biotechnol. Bioeng. 1983, 25, 3027–3048.
- 22J. M. Igartuburu, E. Pando, F. Rodriguez-Luis, A. Gil-Serrano, J. Nat. Prod. 1998, 61, 881–886.
- 23
- 23aS. Willför, R. Sjöholm, C. Laine, B. Holmbom, Wood Sci. Technol. 2002, 36, 101–110;
- 23bS. Willför, R. Sjöholm, C. Laine, M. Roslund, J. Hemming, B. Holmbom, Carbohydr. Polym. 2003, 52, 175–187.
- 24C. L. Xu, A. S. Leppanen, P. Eklund, P. Holmlund, R. Sjoholm, K. Sundberg, S. Willfor, Carbohydr. Res. 2010, 345, 810–816.
- 25
- 25aR. Samuel, M. Foston, N. Jaing, S. Cao, L. Allison, M. Studer, C. Wyman, A. J. Ragauskas, Fuel 2011, 90, 2836–2842;
- 25bD. Yelle, P. Kaparaju, C. Hunt, K. Hirth, H. Kim, J. Ralph, C. Felby, Bioenergy Res. 2013, 6, 211–221;
- 25cC. Qu, T. Kishimoto, M. Kishino, M. Hamada, N. Nakajima, J. Agric. Food Chem. 2011, 59, 5382–5389.
- 26
- 26aM. Lahaye, B. Quemener, M. Causse, G. B. Seymour, Int. J. Biol. Macromol. 2012, 51, 462–470;
- 26bA. Jacobs, O. Dahlman, Biomacromolecules 2001, 2, 894–905;
- 26cA. Jacobs, J. Lundqvist, H. Stålbrand, F. Tjerneld, O. Dahlman, Carbohydr. Res. 2002, 337, 711–717.
- 27A. S. Leppänen, C. L. Xu, P. Eklund, J. Lucenius, M. Osterberg, S. Willfor, J. Appl. Polym. Sci. 2013, 130, 3122–3129.
- 28T. Shimokawa, E. Togawa, K. Kakegawa, A. Kato, N. Hayashi, J. Wood Sci. 2015, 61, 53–59.
- 29A. Synytsya, M. Novak, Ann. Transl. Med. 2014, 2, 17–30.
- 30M. A. Kabel, F. Carvalheiro, G. Garrote, E. Avgerinos, E. Koukios, J. C. Parajo, F. M. Girio, H. A. Schols, A. G. J. Voragen, Carbohydr. Polym. 2002, 50, 47–56.
- 31R. C. Sun, J. Tomkinson, Carbohydr. Polym. 2002, 50, 263–271.
- 32I. Šimkovic, J. Alföldi, H. R. Schulten, Biomass Bioenergy 1993, 4, 373–378.
- 33D. K. Shen, S. Gu, A. V. Bridgwater, J. Anal. Appl. Pyrolysis 2010, 87, 199–206.
- 34P. Capek, J. Alföldi, D. Lišková, Carbohydr. Res. 2002, 337, 1033–1037.
- 35C. L. Xu, A. Pranovich, L. Vahasalo, J. Hemming, B. Holmbom, H. A. Schols, S. Willfor, J. Agric. Food Chem. 2008, 56, 2429–2435.
- 36C. L. Xu, S. Willfor, P. Holmlund, B. Hombom, Carbohydr. Polym. 2009, 75, 498–504.
- 37A. Ebringerová, Z. Hřomádkova, V. Hríbrlová, C. L. Xu, B. Holmbom, A. Sundberg, S. Willfor, Int. J. Biol. Macromol. 2008, 42, 1–5.
- 38
- 38aJ. Gu, J. M. Catchmark, Carbohydr. Polym. 2012, 88, 547–557;
- 38bJ. Gu, J. M. Catchmark, Cellulose 2013, 20, 1613–1627.
- 39A. Tyminski, T. E. Timell, J. Am. Chem. Soc. 1960, 82, 2823–2827.
- 40K. Werner, L. Pommer, M. Broström, J. Anal. Appl. Pyrolysis 2014, 110, 130–137.
- 41
- 41aS. Dutta, S. De, B. Saha, M. I. Alam, Catal. Sci. Technol. 2012, 2, 2025–2036;
- 41bP. L. Dhepe, R. Sahu, (Council of Scientific & Industrial Research), WO2011092711 A1, 2011;
- 41cM. L. T. M. Polizeli, A. C. S. Rizzatti, R. Monti, H. F. Terenzi, J. A. Jorge, D. S. Amorim, Appl. Microbiol. Biotechnol. 2005, 67, 577–591;
- 41dK. Wang, K. H. Kim, R. C. Brown, Green Chem. 2014, 16, 727–735.
- 42
- 42aJ. Z. Zhang, T. J. Chen, J. L. Wua, J. H. Wu, RSC Adv. 2014, 4, 17513–17520;
- 42bD. B. Jordan, M. J. Bowman, J. D. Braker, B. S. Dien, R. E. Hector, C. C. Lee, J. A. Mertens, K. Wagschal, Biochem. J. 2012, 442, 241–252;
- 42cS. M. Carnachan, P. J. Harris, Plant Physiol. Biochem. 2000, 38, 699–708;
- 42dY. Habibi, M. Mahrouz, M. R. Vignon, C. R. Chim. 2005, 8, 1123–1128;
- 42eL. M. C. Cordeiro, C. P. de Almeida, M. Iacomini, Food Chem. 2015, 173, 141–146.
- 43S. Dumitriu, Polysaccharides: Structural Diversity and Functional Versatility, 2nd ed., Marcel Dekker, New York, 2008.
- 44
- 44aB. Y. Wang, Environmental Biodegradation Research Focus, Nova Science Publishers, New York 2007;
- 44bM. M. de O. Buanafina, Mol. Plant 2009, 2, 861–872;
- 44cAgroindustrial wastes as substrates for microbial enzymes production and source of sugar for bioethanol production: D. A. Bocchini Martins, H. Ferreira Alves do Prado, R. Simões Ribeiro Leite, H. Ferreira, M. M. de Souza Moretti, R. da Silva, E. Gomes in Integrated Waste Management, Vol. II (Ed.: ), Intech, Chapter 17, 2011.
- 45
- 45aM. S. Talmadge, R. M. Baldwin, M. J. Biddy, R. L. McCormick, G. T. Beckham, G. A. Ferguson, S. Czernik, K. A. Magrini-Bair, T. D. Foust, P. D. Metelski, C. Hetrick, M. R. Nimlos, Green Chem. 2014, 16, 407–453;
- 45bR. Sun, J. M. Lawther, W. B. Banks, Ind. Crops Prod. 1998, 7, 121–128.
- 46N. M. Mestechkina, A. V. Egorov, O. V. Anulov, V. D. Shcherbukhin, Appl. Biochem. Microbiol. 2005, 41, 283–288.
- 47
- 47aP. Gallezot, Chem. Soc. Rev. 2012, 41, 1538–1558;
- 47bV. D. Shcherbukhin, Food Hydrocolloids 1992, 6, 3–7;
- 47cM. C. Miller, I. V. Nesmelova, D. Platt, A. A. Klyosov, K. H. Mayo, Biochem. J. 2009, 421, 211–221;
- 47dP. J. H. Daas, H. A. Schols, H. H. J. de Jongh, Carbohydr. Res. 2000, 329, 609–619;
- 47eA. A. Klyosov, G. S. Dotsenko, W. A. Hinz, A. P. Sinitsyn, Carbohydr. Res. 2012, 352, 65–69;
- 47fT. Hannuksela, M. Tenkanen, B. Holmbom, Cellulose 2002, 9, 251–261;
- 47gC. M. Swanink, J. F. Meis, A. J. Rijs, J. P. Donnelly, P. E. Verweij, J. Clin. Microbiol. 1997, 35, 257–260.
- 48
- 48aM. Yoshimura, T. Takaya, K. Nishinari, Carbohydr. Polym. 1998, 35, 71–79;
- 48bC. M. Gallaher, J. Munion, R. Hesslink, J. Wise, D. D. Gallaher, J. Nutr. 2000, 130, 2753–2759;
- 48cV. Davé, S. McCarthy, J. Environ. Polym. Degrad. 1997, 5, 237–241;
- 48dM. Maeda, H. Shimahara, N. Sugiyama, Agric. Biol. Chem. 1980, 44, 245–252;
- 48eC. Zhang, J. Chen, F. Yang, Carbohydr. Polym. 2014, 104, 175–181;
- 48fD. J. Nowakowski, C. R. Woodbridge, J. M. Jones, J. Anal. Appl. Pyrolysis 2008, 83, 197–204;
- 48gK. Aravind, V. Patil, G. Devegowda, B. Umakantha, S. Ganpule, Poult. Sci. 2003, 82, 571–576.
- 49
- 49aK. Kato, K. Matsuda, Agric. Biol. Chem. 1969, 33, 1446–1453;
- 49bC. Branca, C. Di Blasi, C. Mango, I. Hrablay, Ind. Eng. Chem. Res. 2013, 52, 5030–5039.
- 50F. Schierbaum, Food/Nahrung 1986, 30, 1054–1054.
10.1002/food.19860301033 Google Scholar
- 51
- 51aB. Koroskenyi, S. P. McCarthy, Biomacromolecules 2001, 2, 824–826;
- 51bK. Katsuraya, K. Okuyama, K. Hatanaka, R. Oshima, T. Sato, K. Matsuzaki, Carbohydr. Polym. 2003, 53, 183–189;
- 51cJ. Li, T. Ye, X. Wu, J. Chen, S. Wang, L. Lin, B. Li, Food Hydrocolloids 2014, 40, 9–15.
- 52F. Smith, H. C. Srivastava, J. Am. Chem. Soc. 1959, 81, 1715–1718.
- 53
- 53aB. T. Kusema, T. Tonnov, P. Maki-Arvela, T. Salmi, S. Willfor, B. Holmbom, D. Y. Murzin, Catal. Sci. Technol. 2013, 3, 116–122;
- 53bS. Willför, A. Sundberg, J. Hemming, B. Holmbom, Wood Sci. Technol. 2005, 39, 245–258;
- 53cL. A. Donaldson, J. P. Knox, Plant Physiol. 2012, 158, 642–653.
- 54
- 54aK. S. Mikkonen, M. I. Heikkila, S. M. Willfor, M. Tenkanen, Int. J. Polym. Sci. 2012, 2012, 1–8;
- 54bS. Willför, K. Sundberg, M. Tenkanen, B. Holmbom, Carbohydr. Polym. 2008, 72, 197–210;
- 54cT. Song, A. Pranovich, B. Holmbom, Bioresour. Technol. 2013, 130, 198–203.
- 55F. S. Ekholm, A. Arda, P. Eklund, S. Andre, H. J. Gabius, J. Jimenez-Barbero, R. Leino, Chem. Eur. J. 2012, 18, 14392–14405.
- 56T. Hannuksela, C. H. du Penhoat, Carbohydr. Res. 2004, 339, 301–312.
- 57P. Nebreda Andrea, H. Grénman, P. Mäki-Arvela, K. Eränen, J. Hemming, S. Willför, Y. Murzin Dmitry, T. Salmi, Holzforschung 2016, 70, 187–194.
- 58
- 58aS. Willför, P. Rehn, A. Sundberg, K. Sundberg, B. Holmbom, TAPPI 2003, 2, 27–32;
- 58bR. L. Casebier, J. K. Hamilton, H. L. Hergert, TAPPI 1969, 52, 2369–2377;
- 58cF. Örså, B. Holmbom, J. Thornton, Wood Sci. Technol. 1997, 31, 279–290;
- 58dJ. Lundqvist, A. Jacobs, M. Palm, G. Zacchi, O. Dahlman, H. Stalbrand, Carbohydr. Polym. 2003, 51, 203–211;
- 58eP. Capek, M. Kubachova, J. Alfoldi, L. Bilisics, D. Liskova, D. Kakoniova, Carbohydr. Res. 2000, 329, 635–645;
- 58fK. Leppänen, P. Spetz, A. Pranovich, K. Hartonen, V. Kitunen, H. Ilvesniemi, Wood Sci. Technol. 2011, 45, 223–236;
- 58gT. Song, A. Pranovich, I. Sumerskiy, B. Holmbom, Holzforschung 2008, 62, 659–666;
- 58hT. Song, A. Pranovich, B. Holmbom, Bioresour. Technol. 2011, 102, 10518–10523;
- 58iT. Song, A. Pranovich, B. Holmbom, Holzforschung 2011, 65, 35–42;
- 58jT. Song, A. Pranovich, B. Holmbom, Bioresources 2012, 7, 4214–4225;
- 58kA. Aho, N. Kumar, K. Eranen, B. Holmbom, M. Hupa, T. Salmi, D. Y. Murzin, Int. J. Mol. Sci. 2008, 9, 1665–1675.
- 59
- 59aN. A. Eckardt, Plant Cell 2008, 20, 1421–1422;
- 59bX. Xue, S. C. Fry, Ann. Bot. 2012, 109, 873–886;
- 59cZ. A. Popper, S. C. Fry, New Phytol. 2004, 164, 165–174;
- 59dM. Ochoa-Villarreal, E. Aispuro-Hernández, M. A. Martínez-Téllez, I. Vargas-Arispuro, Polymerization (Ed.: ), InTech, Rijeka, Croatia, 2012.
- 60
- 60aM. Mori, S. Eda, K. Kato, Agric. Biol. Chem. 1979, 43, 145–149;
- 60bM. Pauly, L. N. Andersen, S. Kauppinen, L. V. Kofod, W. S. York, P. Albersheim, A. Darvill, Glycobiology 1999, 9, 93–100;
- 60cM. Günl, M. Pauly, Planta 2011, 233, 707–719.
- 61
- 61aW. S. York, L. K. Harvey, R. Guillen, P. Alberhseim, A. G. Darvill, Carbohydr. Res. 1993, 248, 285–301;
- 61bW. S. York, V. S. K. Kolli, R. Orlando, P. Albersheim, A. G. Darvill, Carbohydr. Res. 1996, 285, 99–128;
- 61cI. M. Sims, S. L. A. Munro, G. Currie, D. Craik, A. Bacic, Carbohydr. Res. 1996, 293, 147–172.
- 62D. S. Thompson, J. Exp. Bot. 2005, 56, 2275–2285.
- 63J. R. Woodward, G. B. Fincher, B. A. Stone, Carbohydr. Polym. 1983, 3, 207–225.
- 64
- 64aS. C. Fry, B. H. W. A. Nesselrode, J. G. Miller, B. R. Mewburn, New Phytol. 2008, 179, 104–115;
- 64bJ. A. K. Trethewey, L. M. Campbell, P. J. Harris, Am. J. Bot. 2005, 92, 1660–1674;
- 64cJ. A. K. Trethewey, L. M. Campbell, P. J. Harris, Am. J. Bot. 2005, 92, 1660–1674.
- 65A. Lazaridou, C. G. Biliaderis, M. Micha-Screttas, B. R. Steele, Food Hydrocolloids 2004, 18, 837–855.
- 66
- 66aS. W. A. Hinz, R. Verhoef, H. A. Schols, J. P. Vincken, A. G. J. Voragen, Carbohydr. Res. 2005, 340, 2135–2143;
- 66bC. Delattre, T. A. Fenoradosoa, P. Michaud, Braz. Arch. Biol. Technol. 2011, 54, 1075–1092.
- 67R. S. Aquino, A. M. Landeira-Fernandez, A. P. Valente, L. R. Andrade, P. A. S. Mourao, Glycobiology 2005, 15, 11–20.
- 68
- 68aG. R. Ponder, G. N. Richards, Carbohydr. Polym. 1997, 34, 251–261;
- 68bG. R. Ponder, G. N. Richards, J. Carbohydr. Chem. 1997, 16, 181–193;
- 68cG. R. Ponder, G. N. Richards, J. Carbohydr. Chem. 1997, 16, 195–211;
- 68dG. R. Ponder, Carbohydr. Polym. 1998, 36, 1–14;
- 68eJ. Thornton, R. Ekman, B. Holmbom, F. Örså, J. Wood Chem. Technol. 1994, 14, 159–175.
- 69
- 69aL. Tan, S. Eberhard, S. Pattathil, C. Warder, J. Glushka, C. H. Yuan, Z. Y. Hao, X. Zhu, U. Avci, J. S. Miller, D. Baldwin, C. Pham, R. Orlando, A. Darvill, M. G. Hahn, M. J. Kieliszewski, D. Mohnen, Plant Cell 2013, 25, 270–287;
- 69bP. Immerzeel, M. M. Eppink, S. C. De Vries, H. A. Schols, A. G. J. Voragen, Physiol. Plant. 2006, 128, 18–28.
- 70E. Dickinson, Food Hydrocolloids 2003, 17, 25–39.
- 71R. Torget, P. Walter, M. Himmel, K. Grohmann, Appl. Biochem. Biotechnol. 1991, 28, 75–86.
- 72
- 72aC. Altaner, B. Saake, J. Puls, Cellulose 2003, 10, 85–95;
- 72bQ. Beg, M. Kapoor, L. Mahajan, G. Hoondal, Appl. Microbiol. Biotechnol. 2001, 56, 326–338.
- 73X. Zhou, W. Li, R. Mabon, L. J. Broadbelt, 2016, unpublished.
- 74
- 74aS. Dumitriu, Polysaccharides: Structural Diversity and Functional Versatility, Marcel Dekker, New York, 2004;
10.1201/9781420030822 Google Scholar
- 74bS. Dammstrom, L. Salmen, P. Gatenholm, Bioresources 2009, 4, 3–14.
- 75
- 75aN. Shukry, B. S. Girgis, M. Z. Sefain, Bull. Soc. Chim. Fr. 1990, 515–519;
- 75bR. S. Miller, J. Bellan, Combust. Sci. Technol. 1997, 126, 97–137;
- 75cH. P. Yang, R. Yan, H. P. Chen, C. G. Zheng, D. H. Lee, D. T. Liang, Energy Fuels 2006, 20, 388–393;
- 75dT. Hosoya, H. Kawamoto, S. Saka, J. Anal. Appl. Pyrolysis 2007, 80, 118–125;
- 75eX. Huang, D. Cheng, F. Chen, X. Zhan, Renew. Energy 2016, 96, 490–497;
- 75fC. Couhert, J. M. Commandre, S. Salvador, Fuel 2009, 88, 408–417;
- 75gY. Y. Peng, S. B. Wu, Cellul. Chem. Technol. 2011, 45, 605–612;
- 75hB. Peters, Fuel Process. Technol. 2011, 92, 1993–1998;
- 75iQ. Q. Ren, C. S. Zhao, X. P. Chen, L. B. Duan, Y. J. Li, C. Y. Ma, Proc. Combust. Inst. 2011, 33, 1715–1722;
- 75jL. Burhenne, J. Messmer, T. Aicher, M. P. Laborie, J. Anal. Appl. Pyrolysis 2013, 101, 177–184;
- 75kP. Giudicianni, G. Cardone, R. Ragucci, J. Anal. Appl. Pyrolysis 2013, 100, 213–222;
- 75lQ. Q. Ren, C. S. Zhao, Environ. Sci. Technol. 2013, 47, 8955–8961;
- 75mS. R. Wang, Y. Zhou, T. Liang, X. J. Guo, Biomass Bioenergy 2013, 57, 106–112;
- 75nD. X. Liu, D. Zemlyanov, T. P. Wu, R. J. Lobo-Lapidus, J. A. Dumesic, J. T. Miller, C. L. Marshall, J. Catal. 2013, 299, 336–345;
- 75oS. D. Stefanidis, K. G. Kalogiannis, E. F. Iliopoulou, C. M. Michailof, P. A. Pilavachi, A. A. Lappas, J. Anal. Appl. Pyrolysis 2014, 105, 143–150;
- 75pM. M. Hossain, I. M. Scott, B. D. McGarvey, K. Conn, L. Ferrante, F. Berruti, C. Briens, J. Pest Sci. 2015, 88, 171–179;
- 75qL. Q. Jiang, A. Q. Zheng, Z. L. Zhao, F. He, H. B. Li, W. G. Liu, Bioresour. Technol. 2015, 182, 364–367;
- 75rH. Zhou, Y. Q. Long, A. H. Meng, S. Chen, Q. H. Li, Y. G. Zhang, RSC Adv. 2015, 5, 26509–26516.
- 76R. Zeitoun, P. Y. Pontalier, P. Marechal, L. Rigal, Bioresour. Technol. 2010, 101, 9348–9354.
- 77
- 77aE. Hoekstra, W. P. M. van Swaaij, S. R. A. Kersten, K. J. A. Hogendoorn, Chem. Eng. J. 2012, 191, 45–58;
- 77bA. Majid, I. Pihillagawa, J. Fuels 2014, 2014, 390261.
- 78F. Shafizadeh, G. D. McGinnis, R. A. Susott, H. W. Tatton, J. Org. Chem. 1971, 36, 2813–2818.
- 79U. Räisänen, I. Pitkanen, H. Halttunen, M. Hurtta, J. Therm. Anal. Calorim. 2003, 72, 481–488.
- 80S. R. Wang, B. Ru, H. Z. Lin, Z. Y. Luo, Bioresour. Technol. 2013, 143, 378–383.
- 81F. Shafizadeh, G. D. McGinnis, C. W. Philpot, Carbohydr. Res. 1972, 25, 23–33.
- 82D. K. Shen, S. Gu, A. V. Bridgwater, Carbohydr. Polym. 2010, 82, 39–45.
- 83S. R. Wang, T. Liang, B. Ru, X. J. Guo, Chem. Res. Chin. Univ. 2013, 29, 782–787.
- 84R. Moriana, Y. Zhang, P. Mischnick, J. Li, M. Ek, Carbohydr. Polym. 2014, 106, 60–70.
- 85S. R. Wang, B. Ru, H. Z. Lin, W. X. Sun, C. J. Yu, Z. Y. Luo, Chem. Res. Chin. Univ. 2014, 30, 848–854.
- 86
- 86aR. Bar-Gadda, Thermochim. Acta 1980, 42, 153–163;
- 86bA. Ohnishi, E. Takagi, K. Kato, Carbohydr. Res. 1976, 50, 275–278;
- 86cG. R. Ponder, G. N. Richards, Carbohydr. Res. 1991, 218, 143–155;
- 86dA. D. Pouwels, J. J. Boon, J. Wood Chem. Technol. 1987, 7, 197–213;
- 86eA. D. Pouwels, A. Tom, G. B. Eijkel, J. J. Boon, J. Anal. Appl. Pyrolysis 1987, 11, 417–436;
- 86fL. P. Zhou, M. T. Shi, Q. Y. Cai, L. Wu, X. P. Hu, X. M. Yang, C. Chen, J. Xu, Microporous Mesoporous Mater. 2013, 169, 54–59;
- 86gJ. Puls, Macromol. Symp. 1997, 120, 183–196;
- 86hA. Dufour, M. Castro-Diaz, P. Marchal, N. Brosse, R. Olcese, M. Bouroukba, C. Snape, Energy Fuels 2012, 26, 6432–6441;
- 86iH. C. Yoon, P. Pozivil, A. Steinfeld, Energy Fuels 2012, 26, 357–364;
- 86jZ. Zhang, C. Liu, H. J. Li, J. B. Huang, X. L. Huang, Acta Chim. Sinica 2011, 69, 2099–2107;
- 86kP. Rutkowski, Fuel Process. Technol. 2011, 92, 517–522.
- 87F. Shafizadeh, G. D. McGinnis, Carbohydr. Res. 1971, 16, 273–277.
- 88
- 88aJ. Huang, C. Liu, H. Tong, W. Li, D. Wu, J. Fuel Chem. Technol. 2013, 41, 285–293;
- 88bT. Hosoya, H. Kawamoto, S. Saka, J. Anal. Appl. Pyrolysis 2007, 78, 328–336.
- 89H. Y. Yang, Q. Chen, K. Wang, R. C. Sun, Bioresour. Technol. 2013, 147, 539–544.
- 90
- 90aJ. Söderström, L. Pilcher, M. Galbe, G. Zacchi, Appl. Biochem. Biotechnol. 2002, 98, 5–21;
- 90bG. Garrote, H. Dominguez, J. C. Parajo, J. Chem. Technol. Biotechnol. 1999, 74, 1101–1109;
10.1002/(SICI)1097-4660(199911)74:11<1101::AID-JCTB146>3.0.CO;2-M CAS Web of Science® Google Scholar
- 90cG. Garrote, H. Dominguez, J. C. Parajo, Process Biochem. 2001, 36, 571–578.
- 91
- 91aJ. Rowley, S. Decker, W. Michener, S. Black, 3 Biotech 2013, 3, 433–438;
- 91bJ. Bian, F. Peng, F. Xu, R. C. Sun, J. F. Kennedy, Carbohydr. Polym. 2010, 80, 753–760.
- 92
- 92aM. Idrees, A. Adnan, S. Sheikh, F. A. Qureshi, Excli J. 2013, 12, 30–40;
- 92bM. Neureiter, H. Danner, C. Thomasser, B. Saidi, R. Braun, Appl. Biochem. Biotechnol. 2002, 98, 49–58;
- 92cR. Timung, M. Mohan, B. Chilukoti, S. Sasmal, T. Banerjee, V. V. Goud, Biomass Bioenergy 2015, 81, 9–18.
- 93N. Westerberg, H. Sunner, M. Helander, G. Henriksson, M. Lawoko, A. Rasmuson, Bioresources 2012, 7, 4501–4516.
- 94
- 94aM. H. O′Dwyer, Biochem. J. 1940, 34, 149–152;
- 94bH. L. Cheng, J. L. Li, Q. H. Feng, H. Y. Zhan, Y. M. Xie, Bioresources 2014, 9, 2671–2680;
- 94cH. Hasanjanzadeh, S. Hedjazi, A. Ashori, S. Mandavi, H. Yousefi, Int. J. Biol. Macromol. 2014, 68, 198–204;
- 94dH. C. Hu, X. S. Chai, H. Y. Zhan, D. Barnes, L. L. Huang, L. H. Chen, Ind. Eng. Chem. Res. 2014, 53, 11684–11690;
- 94eJ. V. Rissanen, H. Grenman, S. Willfor, D. Y. Murzin, T. Salmi, Ind. Eng. Chem. Res. 2014, 53, 6341–6350;
- 94fF. Lopez, M. T. Garcia, V. Mena, J. M. Loaiza, M. A. M. Zamudio, J. C. Garcia, Bioresources 2015, 10, 55–67;
- 94gM. J. Taherzadeh, K. Karimi, Int. J. Mol. Sci. 2008, 9, 1621–1651.
- 95
- 95aL. H. Cheng, A. Abd Karim, M. H. Norziah, C. C. Seow, Food Res. Int. 2002, 35, 829–836;
- 95bS. Gao, K. Nishinari, Colloids Surf. B 2004, 38, 241–249;
- 95cX. Du, J. Li, J. Chen, B. Li, Food Res. Int. 2012, 46, 270–278.
- 96
- 96aJ. M. Brillouet, J. P. Joseleau, J. P. Utille, D. Lelievre, J. Agric. Food Chem. 1982, 30, 488–495;
- 96bX. F. Sun, R. C. Sun, P. Fowler, M. S. Baird, J. Agric. Food Chem. 2005, 53, 860–870.
- 97M. G. Grønli, G. Varhegyi, C. di Blasi, Ind. Eng. Chem. Res. 2002, 41, 4201–4208.
- 98
- 98aS. Wang, X. Guo, K. Wang, Z. Luo, J. Anal. Appl. Pyrolysis 2011, 91, 183–189;
- 98bG. Wang, W. Li, B. Li, H. Chen, Fuel 2008, 87, 552–558;
- 98cX. Y. Du, M. Perez-Boada, C. Fernandez, J. Rencoret, J. C. del Rio, J. Jimenez-Barbero, J. B. Li, A. Gutierrez, A. T. Martinez, Planta 2014, 239, 1079–1090.
- 99S. Wang, H. Lin, L. Zhang, G. Dai, Y. Zhao, X. Wang, B. Ru, Energy Fuels 2016, 30, 5721–5728..
- 100X. Zhou, M. W. Nolte, H. B. Mayes, B. H. Shanks, L. J. Broadbelt, AIChE J. 2016, 62, 766–777.
- 101S. R. A. Kersten, X. Q. Wang, W. Prins, W. P. M. van Swaaij, Ind. Eng. Chem. Res. 2005, 44, 8773–8785.
- 102J. Lédé, Oil Gas Sci. Technol. 2013, 68, 801–814.
- 103
- 103aV. K. Guda, P. H. Steele, V. K. Penmetsa, Q. Li, Recent Advances in Thermo-Chemical Conversion of Biomass (Ed.: ), Elsevier, Boston, 2015, pp. 177–211;
10.1016/B978-0-444-63289-0.00007-7 Google Scholar
- 103bT. Aysu, M. M. Kucuk, Energy 2014, 64, 1002–1025;
- 103cJ. H. Wu, J. K. Wang, J. Chen, H. P. Si, K. Y. Lin, Adv. Mater. Res. 2012, 424, 1117–1123.
- 104
- 104aJ. L. Colby, P. J. Dauenhauer, L. D. Schmidt, Green Chem. 2008, 10, 773–783;
- 104bM. S. Mettler, S. H. Mushrif, A. D. Paulsen, A. D. Javadekar, D. G. Vlachos, P. J. Dauenhauer, Energy Environ. Sci. 2012, 5, 5414–5424;
- 104cA. D. Paulsen, M. S. Mettler, P. J. Dauenhauer, Energy Fuels 2013, 27, 2126–2134.
- 105
- 105a“Real-time monitoring of molecular products in thin-film fast pyrolysis of glucose-based carbohydrates”: Y. J. Lee in tcbiomass2015 (Chicago, IL), 2015, http://www.gastechnology.org/tcbiomass/tcb2015/Lee_Young_Jin-Presentation-tcbiomass2015.pdf;
- 105bD. P. Cole, Y. J. Lee, J. Anal. Appl. Pyrolysis 2015, 112, 129–134.
- 106
- 106aZ. Wang, S. Zhou, B. Pecha, R. J. M. Westerhof, M. Garcia-Perez, Energy Fuels 2014, 28, 5167–5177;
- 106bE. Hoekstra, W. P. M. van Swaaij, S. R. A. Kersten, K. J. A. Hogendoorn, Chem. Eng. J. 2012, 187, 172–184;
- 106cX. Gong, Y. Yu, X. Gao, Y. Qiao, M. Xu, H. Wu, Energy Fuels 2014, 28, 5204–5211;
- 106dA. F. Drummond, I. W. Drummond, Ind. Eng. Chem. Res. 1996, 35, 1263–1268.
- 107
- 107aM. Garcìa-Pèrez, A. Chaala, C. Roy, J. Anal. Appl. Pyrolysis 2002, 65, 111–136;
- 107bM. R. Hajaligol, J. B. Howard, W. A. Peters, Combust. Flame 1993, 95, 47–60.
- 108
- 108aA. Jensen, K. Dam-Johansen, M. A. Wojtowicz, M. A. Serio, Energy Fuels 1998, 12, 929–938;
- 108bN. Shimada, H. Kawamoto, S. Saka, J. Anal. Appl. Pyrolysis 2008, 81, 80–87;
- 108cP. R. Patwardhan, J. A. Satrio, R. C. Brown, B. H. Shanks, Bioresour. Technol. 2010, 101, 4646–4655;
- 108dK. Raveendran, A. Ganesh, K. C. Khilar, Fuel 1995, 74, 1812–1822;
- 108eA. Anca-Couce, Prog. Energy Combust. Sci. 2016, 53, 41–79;
- 108fS. A. Löw, I. M. Löw, M. J. Weissenborn, B. Hauer, ChemCatChem 2016, 8, 911–915;
- 108gY. Yu, D. Liu, H. Wu, Energy Fuels 2014, 28, 245–253;
- 108hC. Zhu, S. Maduskar, A. D. Paulsen, P. J. Dauenhauer, ChemCatChem 2016, 8, 818–829.
- 109D. S. Scott, L. Paterson, J. Piskorz, D. Radlein, J. Anal. Appl. Pyrolysis 2001, 57, 169–176.
- 110
- 110aV. Seshadri, P. R. Westmoreland, J. Phys. Chem. A 2012, 116, 11997–12013;
- 110bH. B. Mayes, L. J. Broadbelt, J. Phys. Chem. A 2012, 116, 7098–7106;
- 110cH. B. Mayes, M. W. Nolte, G. T. Beckham, B. H. Shanks, L. J. Broadbelt, ACS Catal. 2015, 5, 192–202;
- 110dH. B. Mayes, J. Tian, M. W. Nolte, B. H. Shanks, G. T. Beckham, S. Gnanakaran, L. J. Broadbelt, J. Phys. Chem. B 2014, 118, 1990–2000;
- 110eX. Zhou, M. W. Nolte, H. B. Mayes, B. H. Shanks, L. J. Broadbelt, Ind. Eng. Chem. Res. 2014, 53, 13274–13289;
- 110fX. Zhou, M. W. Nolte, B. H. Shanks, L. J. Broadbelt, Ind. Eng. Chem. Res. 2014, 53, 13290–13301;
- 110gX. Zhou, M. W. Nolte, B. H. Shanks, L. J. Broadbelt, AIChE J. 2016, 62, 778–791;
- 110hR. Vinu, L. J. Broadbelt, Annu. Rev. Chem. Biomol. 2012, 3, 29–54.
- 111J. B. Huang, C. Liu, H. Tong, W. M. Li, D. Wu, Comp. Theor. Chem. 2012, 1001, 44–50.
- 112H. Tian, B. Hu, Y. Zhang, Q. Lu, C. Dong, Y. Yang, J. Fuel Chem. Technol. 2015, 43, 185–194.
- 113P. Williams, S. Besler, Advances in Thermochemical Biomass Conversion (Ed.: ), Springer, Dordrecht, 1993, pp. 771–783.
10.1007/978-94-011-1336-6_60 Google Scholar
- 114
- 114aB. Danon, G. Marcotullio, W. de Jong, Green Chem. 2014, 16, 39–54;
- 114bT. J. Schwartz, B. J. O'Neill, B. H. Shanks, J. A. Dumesic, ACS Catal. 2014, 4, 2060–2069.
- 115
- 115aB. Girisuta, K. G. Kalogiannis, K. Dussan, J. J. Leahy, M. H. B. Hayes, S. D. Stefanidis, C. M. Michailof, A. A. Lappas, Bioresour. Technol. 2012, 126, 92–100;
- 115bR. J. van Putten, J. C. van der Waal, E. de Jong, C. B. Rasrendra, H. J. Heeres, J. G. de Vries, Chem. Rev. 2013, 113, 1499–1597.
- 116J. B. Paine III, Y. B. Pithawalla, J. D. Naworal, J. Anal. Appl. Pyrolysis 2008, 83, 37–63.
- 117A. K. Burnham, X. Zhou, L. J. Broadbelt, Energy Fuels 2015, 29, 2906–2918.
- 118Y. Tonbul, J. Therm. Anal. Calorim. 2008, 91, 641–647.
- 119J. M. Cai, W. X. Wu, R. H. Liu, G. W. Huber, Green Chem. 2013, 15, 1331–1340.
- 120R. Vinu, L. J. Broadbelt, Energy Environ. Sci. 2012, 5, 9808–9826.
- 121E. Ranzi, A. Cuoci, T. Faravelli, A. Frassoldati, G. Migliavacca, S. Pierucci, S. Sommariva, Energy Fuels 2008, 22, 4292–4300.
- 122
- 122aC. di Blasi, M. Lanzetta, J. Anal. Appl. Pyrolysis 1997, 40–41, 287–303;
- 122bS. Vyazovkin, K. Chrissafis, M. L. di Lorenzo, N. Koga, M. Pijolat, B. Roduit, N. Sbirrazzuoli, J. J. Sunol, Thermochim. Acta 2014, 590, 1–23;
- 122cM. J. Antal, G. Varhegyi, E. Jakab, Ind. Eng. Chem. Res. 1998, 37, 1267–1275;
- 122dM. Grønli, M. J. Antal, G. Varhegyi, Ind. Eng. Chem. Res. 1999, 38, 2238–2244;
- 122eR. E. Lyon, N. Safronava, J. Senese, S. I. Stoliarov, Thermochim. Acta 2012, 545, 82–89.
- 123G. Várhegyi, M. J. Antal, Jr., E. Jakab, P. Szabó, J. Anal. Appl. Pyrolysis 1997, 42, 73–87.
- 124S. R. Horton, R. J. Mohr, Y. Zhang, F. P. Petrocelli, M. T. Klein, Energy Fuels 2016, 30, 1647–1661.
- 125L. J. Broadbelt, J. Pfaendtner, AIChE J. 2005, 51, 2112–2121.