Review on single-phase high-frequency resonant inverters for current sharing in multiple inverter system
Zhang Pengyu
School of Automation Science and Engineering, South China University of Technology, Guangzhou, China
Search for more papers by this authorLiu Junfeng
School of Automation Science and Engineering, South China University of Technology, Guangzhou, China
Search for more papers by this authorMa Mingze
School of Automation Science and Engineering, South China University of Technology, Guangzhou, China
Search for more papers by this authorFang Zijie
School of Automation Science and Engineering, South China University of Technology, Guangzhou, China
Search for more papers by this authorZhou Hao
Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, China
Search for more papers by this authorCorresponding Author
Zeng Jun
School of Electric Power, South China University of Technology, Guangzhou, China
Correspondence
Zeng Jun, School of Electric Power, South China University of Technology, Guangzhou, China.
Email: [email protected]
Search for more papers by this authorZhang Pengyu
School of Automation Science and Engineering, South China University of Technology, Guangzhou, China
Search for more papers by this authorLiu Junfeng
School of Automation Science and Engineering, South China University of Technology, Guangzhou, China
Search for more papers by this authorMa Mingze
School of Automation Science and Engineering, South China University of Technology, Guangzhou, China
Search for more papers by this authorFang Zijie
School of Automation Science and Engineering, South China University of Technology, Guangzhou, China
Search for more papers by this authorZhou Hao
Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, China
Search for more papers by this authorCorresponding Author
Zeng Jun
School of Electric Power, South China University of Technology, Guangzhou, China
Correspondence
Zeng Jun, School of Electric Power, South China University of Technology, Guangzhou, China.
Email: [email protected]
Search for more papers by this authorSummary
Single-phase high-frequency resonant inverters (SPHFRIs) with high power density, fast dynamic response, and high energy conversion efficiency have been widely studied and used in academia and industry. With the development of the modularization concept, the operation of multiple inverter modules is desirable because it can remove the limitations of cost, heat dissipation, and component volume in single inverter operation. However, a critical challenge in multiple inverter systems is that the both the phase and magnitude of the output voltage of each inverter module must be controllable to eliminate circulating currents between inverter modules. Great efforts have been made to solve this problem from three aspects: topology, modulation, and control strategy. In this paper, modulation strategies and topologies of different inverters are presented and reviewed to provide guidance to researchers working in this field. Firstly, multiple inverter system based on the SPHFRI is described and its advantages and disadvantages are analyzed. An important issue in the study of multiple inverter systems is presented, that is, the suppression of circulating current. Secondly, the circulating currents in a multiple inverter system are analyzed and derived from two aspects: (1) magnitude and phase angle and (2) active and reactive currents. Thirdly, the inverters used in the multiple inverter system are introduced, and their operating principles, advantages, and disadvantages are reviewed. A key comparison of several inverters is presented for the benefit of the readers. Fourth, through PI closed-loop simulation, the performance of different multiple inverter systems for suppressing the circulating current is compared in two situations: (1) with magnitude discrepancy only and (2) with both magnitude and phase discrepancy. Finally, the advantages and disadvantages of each inverter are summarized, and the state of the art and future trends are presented.
CONFLICT OF INTEREST STATEMENT
The authors declare no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.
REFERENCES
- 1Luo S, Batarseh I. A review of distributed power systems. Part II. High frequency AC distributed power systems. IEEE Aerosp Electron Syst Mag. 2006; 21(6): 5-14. doi:10.1109/MAES.2006.1662037
- 2Strzelecki RM, Benysek G. Power Electronics in Smart Electrical Energy Networks. Springer London; 2008.
- 3Bose BK, Kin M-H, Kankam MD. High frequency AC vs. DC distribution system for next generation hybrid electric vehicle. In: Proceedings of the 1996 IEEE IECON. 22nd International Conference on Industrial Electronics, Control, and Instrumentation. IEEE; 1996: 706-712.
10.1109/IECON.1996.565964 Google Scholar
- 4Zeng J, Li X, Liu J. A controllable LCL-T resonant AC/DC converter for high frequency power distribution systems. J Power Electron. 2015; 15(4): 876-885. doi:10.6113/JPE.2015.15.4.876
- 5Liu J, Zeng J, Hu R, Cheng KWE. A valley-fill driver with current balancing for parallel LED strings used for high-frequency AC power distribution of vehicle. IEEE Trans Transport Electrific. 2017; 3(1): 180-190. doi:10.1109/TTE.2017.2656142
- 6Zeng J, Liu J, Yang J, Luo F. A voltage-feed high-frequency resonant inverter with controlled current output as a high-frequency AC power source. IEEE Trans Power Electron. 2015; 30(9): 4854-4863. doi:10.1109/TPEL.2014.2360836
- 7Liu J, Zeng J. An integrated controller for high-frequency LCLC resonant inverter with phase-shifted control and frequency regulation: integrated controller for LCLC resonant inverter. Int J Circuit Theory Appl. 2017; 45(1): 47-62. doi:10.1002/cta.2223
- 8Sun J. Small-signal methods for AC distributed power systems—a review. IEEE Trans Power Electron. 2009; 24(11): 2545-2554. doi:10.1109/TPEL.2009.2029859
- 9Ng S-Y, Luk PC-K, Jinupun K. High frequency AC distributed power system for fluorescent lighting. In: Proceedings of the 2011 14th European Conference on Power Electronics and Applications. IEEE; 2011: 1-10.
- 10Musavi F, Jain PK, Zhang H. A resonant AC/DC converter for high frequency power architecture. In: 24th Annual International Telecommunications Energy Conference. IEEE; 2002: 497-503.
10.1109/INTLEC.2002.1048702 Google Scholar
- 11Drobnik J. High frequency alternating current power distribution. In: Proceedings of Intelec 94. IEEE; 1994: 292-296.
10.1109/INTLEC.1994.396620 Google Scholar
- 12Jain P, Pahlevaninezhad M, Pan S, Drobnik J. A review of high-frequency power distribution systems: for space, telecommunication, and computer applications. IEEE Trans Power Electron. 2014; 29(8): 3852-3863. doi:10.1109/TPEL.2013.2291364
- 13Jain PK, Tanju MC. A 20 kHz hybrid resonant power source for the space station. IEEE Trans Aerosp Electron Syst. 1989; 25(4): 491-496. doi:10.1109/7.32081
- 14Sabate JA, Jovanovic MM, Lee FC, Gean RT. Analysis and design-optimization of LCC resonant inverter for high-frequency AC distributed power system. IEEE Trans Ind Electron. 1995; 42(1): 63-71. doi:10.1109/41.345847
- 15Guo W, Jain PK. A low frequency AC to high frequency AC inverter with build-in power factor correction and soft-switching. IEEE Trans Power Electron. 2004; 19(2): 430-442. doi:10.1109/TPEL.2003.823195
- 16Jain P, Drobnik J. Connectorless power transfer architectures for telecommunication systems. In: Proceedings of Intelec'96—International Telecommunications Energy Conference. IEEE; 1996: 574-580.
10.1109/INTLEC.1996.573393 Google Scholar
- 17Guo SH, Zhang B, Huang RH, et al. The design of soft-switched high frequency inverter for resonant coupling wireless power transmission. Power Electron. 2015; 49(10): 78-79.
- 18Zhao S, Tang C, Chen F, Zhao D, Deng P, Xiao J. Modeling and control of the WPT system subject to input nonlinearity and communication delay. IEEE Trans Power Electron. 2023; 38(11): 14776-14787. doi:10.1109/TPEL.2023.3307691
- 19Liu X, Gao F, Wang T, et al. A multi-inverter multi-rectifier wireless power transfer system for charging stations with power loss optimized control. IEEE Trans Power Electron. 2023; 38(8): 9261-9277. doi:10.1109/TPEL.2023.3275284
- 20Li X, Sun B, Xu J, Pang S, Li H. Design and analysis of misalignment insensitive wireless power transfer system based on multitransmitter for constant power. IEEE J Emerg Select Top Power Electron. 2023; 11(4): 4536-4548. doi:10.1109/JESTPE.2023.3269226
- 21Drobnik J, Huang L, Jain P, Steigerwald R. PC platform power distribution system-past application, today's challenge and future direction. In: 21st International Telecommunications Energy Conference. INTELEC'99 (Cat. No.99CH37007). IEEE; 1999: 36.
10.1109/INTLEC.1999.794011 Google Scholar
- 22Jain P, Pinheiro H. Hybrid high frequency AC power distribution architecture for telecommunication systems. IEEE Trans Aerosp Electron Syst. 1999; 35(1): 138-147. doi:10.1109/7.745687
- 23Mishima T, Takami C, Nakaoka M. A new current phasor-controlled ZVS twin half-bridge high-frequency resonant inverter for induction heating. IEEE Trans Ind Electron. 2014; 61(5): 2531-2545. doi:10.1109/TIE.2013.2274420
- 24Hao H, Covic GA, Boys JT. A parallel topology for inductive power transfer power supplies. IEEE Trans Power Electron. 2014; 29(3): 1140-1151. doi:10.1109/TPEL.2013.2262714
- 25Meziane B, Zeroug H. Comprehensive power control performance investigations of resonant inverter for induction metal surface hardening. IEEE Trans Ind Electron. 2016; 63(10): 6086-6096. doi:10.1109/TIE.2016.2581145
- 26Esteve V, Jordan J, Sanchis-Kilders E, et al. Enhanced pulse-density-modulated power control for high-frequency induction heating inverters. IEEE Trans Ind Electron. 2015; 62(11): 6905-6914. doi:10.1109/TIE.2015.2436352
- 27Vishnuram P, Ramasamy S, Suresh P, Sureshkumar A. Phase-locked loop-based asymmetric voltage cancellation for the power control in dual half-bridge series resonant inverter sharing common capacitor for induction heating applications. J Control Automation Electr Syst. 2019; 30(6): 1094-1106. doi:10.1007/s40313-019-00515-5
- 28Vishnuram P, Ramasamy S. Fuzzy logic-based pulse density modulation scheme for mitigating uncertainties in AC–AC resonant converter aided induction heating system. J Circuits Syst Comput. 2019; 28(2):1950030. doi:10.1142/S0218126619500300
- 29Vishnuram P, Ramachandiran G, Ramasamy S, Dayalan S. A comprehensive overview of power converter topologies for induction heating applications. Int Trans Electric Energy Syst. 2020; 30(10):e12554. doi:10.1002/2050-7038.12554
- 30Vishnuram P, Ramachandiran G. Capacitor-less induction heating system with self-resonant bifilar coil. Int J Circuit Theory Appl. 2020; 48(9): 1411-1425. doi:10.1002/cta.2830
- 31Vishnuram P, Kumar S, Singh VK, Babu TS, Kannan R, Hasan KNBM. Phase shift-controlled dual-frequency multi-load converter with independent power control for induction cooking applications. Sustainability. 2022; 14(16):10278. doi:10.3390/su141610278
- 32Vishnuram P, Ramachandiran G, Sudhakar Babu T, Nastasi B. Induction heating in domestic cooking and industrial melting applications: a systematic review on modelling, converter topologies and control schemes. Energies. 2021; 14(20):6634. doi:10.3390/en14206634
- 33Vishnuram P, Dayalan S, Thanikanti SB, Balasubramanian K, Nastasi B. Single source multi-frequency AC-AC converter for induction cooking applications. Energies. 2021; 14(16):4799. doi:10.3390/en14164799
- 34Sureshkumar A, Gunabalan R, Vishnuram P, Ramsamy S, Nastasi B. Investigation on performance of various power control strategies with bifilar coil for induction surface melting application. Energies. 2022; 15(9):3301. doi:10.3390/en15093301
- 35Aljafari B, Vishnuram P, Alagarsamy S, Haes AH. Stability analysis of the dual half-bridge series resonant inverter-fed induction cooking load based on Floquet theory. Int Trans Electric Energy Syst. 2022; 2022:2330683. doi:10.1155/2022/2330683
- 36Kumar A, Sarkar D, Sadhu PK. Power quality improvement in induction heating system using Vienna rectifier based on hysteresis controller. Electric Power Comp Syst. 2020; 48(9–10): 892-905. doi:10.1080/15325008.2020.1821840
- 37Kumar A, Sarkar D, Sadhu PK. Boost power factor correction converter fed domestic induction heating system. In: 2019 20th International Conference on Intelligent System Application to Power Systems (ISAP). IEEE; 2019: 1-6.
10.1109/ISAP48318.2019.9065975 Google Scholar
- 38Kumar A, Raman R, Sarkar D, Sadhu PK, Banerjee A. Improvement in performance of induction heating system using direct AC-AC boost converter. In: 2018 2nd International Conference on Power, Energy and Environment: Towards Smart Technology (ICEPE). IEEE; 2018: 1-5.
- 39Kumar A, Sarkar D, Sadhu PK. An efficient power control technique for high-frequency resonant inverter in induction heating system. Eng Technol Appl Sci Res. 2018; 8(6): 3530-3535. doi:10.48084/etasr.2360
- 40Chakraborty S, Simoes MG. Experimental evaluation of active filtering in a single-phase high-frequency AC microgrid. IEEE Trans Energy Convers. 2009; 24(3): 673-682. doi:10.1109/TEC.2009.2015998
- 41Chakraborty S, Weiss MD, Simoes MG. Distributed intelligent energy management system for a single-phase high-frequency AC microgrid. IEEE Trans Ind Electron. 2007; 54(1): 97-109. doi:10.1109/TIE.2006.888766
- 42Antaloae CC, Marco J, Vaughan ND. Feasibility of high-frequency alternating current power for motor auxiliary loads in vehicles. IEEE Trans Vehic Technol. 2011; 60(2): 390-405. doi:10.1109/TVT.2010.2092446
- 43Zijie F, Junfeng L, Hao Z, Jun Z, Pengyu Z. Disturbance observer-based quasi-proportional resonant composite control strategy for high-frequency LCLC inverters. Int J Circ Theor Appl. 2023; 1-17. doi:10.1002/cta.3643
- 44Zhou H, Liu J, Zhang Z, Ma M, Zeng J. An active damping control strategy with improved transient performance for high-frequency AC power distribution in intelligent vehicles. Int J Circuit Theory Appl. 2023; 51(8): 3774-3791. doi:10.1002/cta.3601
- 45Wu Q, Wang M, Zhou W, Liu Y. High frequency AC power distribution network for electric vehicle auxiliary electrical system. In: IEEE Energy Conversion Congress and Exposition (ECCE). Vol. 2020; 2020: 891-896.
10.1109/ECCE44975.2020.9236349 Google Scholar
- 46Li J, Wu Q, Wang Q, Xiao L, Zhou W, Sun Z. A wide input voltage high-frequency current-fed resonant inverter for HFAC electric vehicle auxiliary electrical system. In: 2023 IEEE Applied Power Electronics Conference and Exposition (APEC). Vol. 2023. IEEE: 3165-3168.
- 47Raghu RS, Liu J, Xue XD, Cheng KWE. High frequency AC auxiliary power source for future vehicles. In: 2015 6th International Conference on Power Electronics Systems and Applications (PESA). IEEE; 2015: 1-6.
10.1109/PESA.2015.7398926 Google Scholar
- 48Cosby MC, Nelms RM. A resonant inverter for electronic ballast applications. IEEE Trans Ind Electron. 1994; 41(4): 418-425. doi:10.1109/41.303792
- 49He Q, Luo Q, Ma K, Sun P, Zhou L. Analysis and design of a single-stage bridgeless high-frequency resonant AC/AC converter. IEEE Trans Power Electron. 2019; 34(1): 700-711. doi:10.1109/TPEL.2018.2819168
- 50He Q, Luo Q, Huang J, Cao C, Sun P. Analysis and design of modular open-loop LED driver with multi-channel output currents. IET Power Electron. 2019; 12(7): 1721-1729. doi:10.1049/iet-pel.2018.6165
- 51He Q, Luo Q, Cao C, Sun P, Zhou L, Wei Y. A modular multi-channel constant-current LED driver with high frequency AC square voltage bus. In: 2018 IEEE Energy Conversion Congress and Exposition (ECCE). Vol. 2018. IEEE: 4712-4716.
- 52Kinnares V, Hothongkham P. Circuit analysis and modeling of a phase-shifted pulsewidth modulation full-bridge-inverter-fed ozone generator with constant applied electrode voltage. IEEE Trans Power Electron. 2010; 25(7): 1739-1752. doi:10.1109/TPEL.2010.2042075
- 53Bendyk M, Luk PCK, Jinupun P. Direct torque control of induction motor drives using high frequency pulse density modulation for reduced torque ripples and switching losses. In: 2007 IEEE Power Electronics Specialists Conference. Vol. 2007. IEEE: 86-91.
- 54Fernando WA, Lu DD. Bi-directional converter for interfacing appliances with HFAC enabled power distribution systems in critical applications. In: 2017 20th International Conference on Electrical Machines and Systems (ICEMS). IEEE; 2017: 1-6.
- 55Jittakort J, Sangswang A, Naetiladdanon S, Chudjuarjeen S, Koompai C. LCCL series resonant inverter for ultrasonic dispersion system with resonant frequency tracking and asymmetrical voltage cancellation control. In: IECON 2015—41st Annual Conference of the IEEE Industrial Electronics Society. IEEE; 2015: 002491-002496.
10.1109/IECON.2015.7392477 Google Scholar
- 56Tsai FS, Lee FCY. High-frequency AC power distribution in Space Station. IEEE Trans Aerosp Electron Syst. 1990; 26(2): 239-253. doi:10.1109/7.53457
- 57Fang M, Zhang D, Qi X. A novel power processing unit (PPU) system architecture based on HFAC bus for electric propulsion spacecraft. IEEE J Emerg Select Top Power Electron. 2022; 10(5): 5381-5391. doi:10.1109/JESTPE.2022.3182029
- 58Sood PK, Lipo TA. Power conversion distribution system using a high-frequency AC link. IEEE Trans Ind Appl. 1988; 24(2): 288-300. doi:10.1109/28.2869
- 59Luo S, Wei G, Batarseh I, Wu T. Investigation of candidate techniques for high-frequency AC distributed power systems. In: Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems (Cat.No.CH37144). IEEE; 2000: 650-653.
- 60Ludwig GW, Wiegman H, Claydon GS, Steigerwald RL, Carey BJ. 100 kHz distributed power system for aircraft engine modular control. In: Proceedings of IEEE Power Electronics Specialist Conference—PESC'93. IEEE; 1993: 811-817.
10.1109/PESC.1993.472015 Google Scholar
- 61Guo W, Jain PK. A power-factor-corrected AC–AC inverter topology using a unified controller for high-frequency power distribution architecture. IEEE Trans Ind Electron. 2004; 51(4): 874-883. doi:10.1109/TIE.2004.831746
- 62Jain PK. Designing a high frequency DC/AC inverter utilizing dual asymmetrical resonant bridges. In: Conference Record of the 1990 IEEE Industry Applications Society Annual Meeting. IEEE; 1990: 1138-1148.
10.1109/IAS.1990.152328 Google Scholar
- 63Ye Z, Jain PK, Sen PC. Dual-edge phase-shift-modulation for circulating current control in full-bridge resonant converters. In: 2008 Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition. Vol. 2008. IEEE: 1041-1047.
- 64Qiu M, Jain PK, Zhang H. An APWM resonant inverter topology for high frequency AC power distribution systems. IEEE Trans Power Electron. 2004; 19(1): 121-129. doi:10.1109/TPEL.2003.820584
- 65Qiu M, Jain PK, Zhang H. An APWM resonant inverter topology for high frequency AC power distribution systems. In: APEC. Seventeenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No.02CH37335). IEEE; 2002: 1141-1147.
- 66Ye Z, Jain P, Sen P. Phase angle control in resonant inverters with pulse phase modulation. J Power Electron. 2008; 8(4): 332-344.
- 67Zeng J, Liu J, Yang J, Luo F, Cheng KWE. A phase synchronization control scheme for LCL-T type high-frequency current source in parallel connection: phase synchronization LCL-T current source parallel connection. Int J Circuit Theory Appl. 2016; 44(1): 197-212. doi:10.1002/cta.2071
- 68Borage M, Tiwari S, Kotaiah S. Analysis and design of an LCL-T resonant converter as a constant-current power supply. IEEE Trans Ind Electron. 2005; 52(6): 1547-1554. doi:10.1109/TIE.2005.858729
- 69Ye Z, Jain PK, Sen PC. A two-stage resonant inverter with control of the phase angle and magnitude of the output voltage. IEEE Trans Ind Electron. 2007; 54(5): 2797-2812. doi:10.1109/TIE.2007.896027
- 70Ye ZM, Jain PK, Sen PC. A new control scheme for circulating current minimization in high frequency AC power distribution architecture with multiple inverter modules operated in parallel. In: 31st Annual Conference of IEEE Industrial Electronics Society, 2005. IECON 2005. IEEE; 2005: 8.
10.1109/IECON.2005.1569040 Google Scholar
- 71Ye Z, Jain PK, Sen PC. Circulating current minimization in high-frequency AC power distribution architecture with multiple inverter modules operated in parallel. IEEE Trans Ind Electron. 2007; 54(5): 2673-2687. doi:10.1109/TIE.2007.896143
- 72Mai RK, Lu LW, Li Y. Circulating current elimination of parallel dual-inverter for IPT systems. Trans China Electrotechnical Soc. 2016; 31(3): 8-15.
- 73Liu J, Li X, Yu Z, Zeng J. A phase angle self-synchronization topology for parallel operations of multi-inverters in high frequency AC distribution. Electric Power Comp Syst. 2018; 46(14–15): 1607-1620. doi:10.1080/15325008.2018.1510444
- 74Mapham N. An SCR Inverter with good regulation and sine-wave output. IEEE Trans Ind General Appl. 1967; IGA-3(2): 176-187. doi:10.1109/TIGA.1967.4180757
10.1109/TIGA.1967.4180757 Google Scholar
- 75Ye Z, Jain PK, Sen PC. A full-bridge resonant inverter with modified phase-shift modulation for high-frequency AC power distribution systems. IEEE Trans Ind Electron. 2007; 54(5): 2831-2845. doi:10.1109/TIE.2007.896030
- 76Liu J, Cheng KWE. New power sharing scheme with correlation control for input-parallel–output-series-based interleaved resonant inverters. IET Power Electron. 2014; 7(5): 1266-1277. doi:10.1049/iet-pel.2013.0203
- 77Ye Z, Lam JCW, Jain PK, Sen PC. A robust one-cycle controlled full-bridge series-parallel resonant inverter for a high-frequency AC (HFAC) distribution system. IEEE Trans Power Electron. 2007; 22(6): 2331-2343. doi:10.1109/TPEL.2007.909190
- 78Liu J, Cheng KWE. μ-based robust controller design of LCLC resonant inverter for high-frequency power distribution system. IET Power Electron. 2013; 6(4): 652-662. doi:10.1049/iet-pel.2012.0637
- 79Liu J, Cheng KWE, Zeng J. A unified phase-shift modulation for optimized synchronization of parallel resonant inverters in high frequency power system. IEEE Trans Ind Electron. 2014; 61(7): 3232-3247. doi:10.1109/TIE.2013.2279354
- 80Liu J, Xu CD, Zeng J, Cheng KWE. Sliding-mode control of phase angle in single-stage resonant inverter using unified phase-shifted modulation. In: 2016 International Symposium on Electrical Engineering (ISEE). Vol. 2016. IEEE: 1-5.
- 81Li Y, Mai R, Lu L, He Z. Active and reactive currents decomposition-based control of angle and magnitude of current for a parallel multiinverter IPT system. IEEE Trans Power Electron. 2017; 32(2): 1602-1614. doi:10.1109/TPEL.2016.2550622
- 82Liu J, Ma M, Zhou H, Zeng J. Research on parallel circulation suppression strategy of high-frequency resonant inverter based on improved active current decomposition method. In: The Proceedings of 2022 International Conference on Wireless Power Transfer (ICWPT2022). Singapore; 2023: 436-443. doi:10.1007/978-981-99-0631-4_43
10.1007/978-981-99-0631-4_43 Google Scholar
- 83Tripathi PR, Thakura P, Keshri RK, Ghosh S, Guerrero JM. Twenty-five years of single-stage buck–boost inverters: development and challenges. IEEE Ind Electron Mag. 2022; 16(1): 4-10. doi:10.1109/MIE.2021.3050135