Modulated model predictive current control technique for single phase nine-level T-type packed U-cell inverter topology
Corresponding Author
Aratipamula Bhanuchandar
Department of Electrical Engineering, National Institute of Technology Warangal, Warangal, India
Correspondence
Aratipamula Bhanuchandar, Department of Electrical Engineering, National Institute of Technology Warangal, Telangana State, Warangal, 506004, India.
Email: [email protected]
Search for more papers by this authorBhagwan K. Murthy
Department of Electrical Engineering, National Institute of Technology Warangal, Warangal, India
Search for more papers by this authorCorresponding Author
Aratipamula Bhanuchandar
Department of Electrical Engineering, National Institute of Technology Warangal, Warangal, India
Correspondence
Aratipamula Bhanuchandar, Department of Electrical Engineering, National Institute of Technology Warangal, Telangana State, Warangal, 506004, India.
Email: [email protected]
Search for more papers by this authorBhagwan K. Murthy
Department of Electrical Engineering, National Institute of Technology Warangal, Warangal, India
Search for more papers by this authorSummary
This paper proposes a new floor function single carrier-based modulated model predictive current control technique (FF-SC-M2PC2T) by considering conventional nine-level T-type packed U-cell (9L-TPUC) inverter topology. To get desired peak value of load current with low harmonic distortion, the finite control set-based model predictive control technique (FCS-MPCT) has been reported in the literature considering load dynamics and minimization of the cost function. However, inherently it suffers from variable switching frequency (VSF) of operation. To diminish this issue, an M2PC2T has been implemented and it provides a constant switching frequency (CSF) of operation. Especially coming to the modulation stage, most authors generally use level-shifted pulse width modulation (PWM) techniques which inherently require more carriers, if-else conditions, and additional logical gate blocks to generate particular level output. Hence, the control complexity increases as going to higher-level inverter topologies. In this manuscript, a new simple floor function single carrier-based pulse width modulation (FF-SC-PWM) technique has been proposed which applies to any single-phase switched capacitor type multilevel inverter topology and it can be easily integrated with a predictive control algorithm to regulate the inverter output current (IOC). Finally, to check the effectiveness of the proposed control technique (PCT) in a closed loop, a laboratory prototype has been employed on 9L-TPUC inverter topology with different static and dynamic case studies considering RL-Load.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
REFERENCES
- 1Akagi H. Multilevel converters: fundamental circuits and systems. Proc IEEE. 2017; 105(11): 2048-2065. doi:10.1109/JPROC.2017.2682105
- 2Vemuganti HP, Sreenivasarao D, Ganjikunta SK, Suryawanshi HM, Abu-Rub H. A survey on reduced switch count multilevel inverters. IEEE Open J Ind Electron Soc. 2021; 2: 80-111. doi:10.1109/OJIES.2021.3050214
10.1109/OJIES.2021.3050214 Google Scholar
- 3Bana PR, Panda KP, Naayagi RT, Siano P, Panda G. Recently developed reduced switch multilevel inverter for renewable energy integration and drives application: topologies, comprehensive analysis and comparative evaluation. IEEE Access. 2019; 7: 54888-54909. doi:10.1109/ACCESS.2019.2913447
- 4Gupta KK, Ranjan A, Bhatnagar P, Sahu LK, Jain S. Multilevel inverter topologies with reduced device count: a review. IEEE Trans Power Electron. 2016; 31(1): 135-151. doi:10.1109/TPEL.2015.2405012
- 5Rodriguez J. Jih-sheng Lai and fang Zheng Peng, multilevel inverters: a survey of topologies, controls, and applications. IEEE Trans Ind Electron. 2002; 49(4): 724-738. doi:10.1109/TIE.2002.801052
- 6Nabae A, Takahashi I, Akagi H. A new neutral-point-clamped PWM inverter. IEEE Trans Ind Appl. Sept. 1981; IA-17(5): 518-523. doi:10.1109/TIA.1981.4503992
- 7Meynard TA, Foch H. Multi-level conversion: high voltage choppers and voltage-source inverters. In: PESC '92 record. 23rd annual IEEE power electronics specialists conference. Vol. 1; 1992: 397-403. doi:10.1109/PESC.1992.254717
10.1109/PESC.1992.254717 Google Scholar
- 8Tammali K, Vangala SS, Vattikonda S, Palle K, Bhanuchandar A, Kumar KB. An Asymmetric Source Configuration of Single-Phase CHB-MLI Topology with a Generalized Reduced-Carrier Modulation Technique. In: International conference on intelligent controller and computing for smart power (ICICCSP). Vol. 2022; 2022: 1-5. doi:10.1109/ICICCSP53532.2022.9862515
10.1109/ICICCSP53532.2022.9862515 Google Scholar
- 9Palle K, Vattikonda S, Vangala SS, Tammali K, Bhanuchandar A, Mohandas A. A Generalized Non-Carrier Modulation Technique for an Asymmetric Source Configuration of Single-Phase CHB-MLI Topology Using PLECS Tool. In: 2022 IEEE 2nd international conference on sustainable energy and future electric transportation (SeFeT); 2022: 1-5. doi:10.1109/SeFeT55524.2022.9909071
10.1109/SeFeT55524.2022.9909071 Google Scholar
- 10Kumar KB, Bhanuchandar A, Mahesh C. A Novel Control Scheme for Symmetric Seven Level Reduced Device Count Multi-Level DC Link (MLDCL) Inverter. In: 2021 international conference on sustainable energy and future electric transportation (SEFET), Hyderabad, India; 2021: 1-4. doi:10.1109/SeFet48154.2021.9375714
10.1109/SeFet48154.2021.9375714 Google Scholar
- 11Bhanuchandar A, Murthy BK. Single Phase Nine Level Switched Capacitor Based Grid Connected Inverter with LCL Filter. In: 2020 3rd international conference on energy, power and environment: towards clean energy technologies; 2021: 1-5. doi:10.1109/ICEPE50861.2021.9404491
10.1109/ICEPE50861.2021.9404491 Google Scholar
- 12Zamiri E, Vosoughi N, Hosseini SH, Barzegarkhoo R, Sabahi M. A new cascaded switched-capacitor multilevel inverter based on improved series–parallel conversion with less number of components. IEEE Trans Ind Electron. 2016; 63(6): 3582-3594. doi:10.1109/TIE.2016.2529563
- 13bin Arif MS, Ayob SM, Iqbal A, Williamson S, Salam Z. Nine-level asymmetrical single phase multilevel inverter topology with low switching frequency and reduce device counts. In: 2017 IEEE international conference on industrial technology (ICIT); 2017: 1516-1521. doi:10.1109/ICIT.2017.7915591
10.1109/ICIT.2017.7915591 Google Scholar
- 14Hosseinzadeh MA, Sarbanzadeh M, Sarbanzadeh E, Rivera M, Wheeler P. New Asymmetric Cascaded Multi-level Converter with Reduced Components. In: 2018 IEEE international conference on electrical Systems for Aircraft, railway, ship propulsion and road vehicles & international transportation electrification conference (ESARS-ITEC); 2018: 1-6. doi:10.1109/ESARS-ITEC.2018.8607383
10.1109/ESARS?ITEC.2018.8607383 Google Scholar
- 15Ali AIM, Sayed MA, Mohamed EEM, Azmy AM. Advanced single-phase nine-level converter for the integration of multiterminal DC supplies. IEEE J Emerg Sel Top Power Electron. 2019; 7(3): 1949-1958. doi:10.1109/JESTPE.2018.2868734
- 16Lee SS, Lee K, Alsofyani IM, Bak Y, Wong JF. Improved switched-capacitor integrated multilevel inverter with a DC source string. IEEE Trans Ind Appl. 2019; 55(6): 7368-7376. doi:10.1109/TIA.2019.2893850
- 17Raman SR, Fong YC, Ye Y, Eric Cheng KW. Family of multiport switched-capacitor multilevel inverters for high-frequency AC power distribution. IEEE Trans Power Electron. 2019; 34(5): 4407-4422. doi:10.1109/TPEL.2018.2859030
- 18Das MK, Sinha A, Jana KC. A novel asymmetrical reduced switch nine-level inverter. J Circuits Syst Comput. 2020; 29(08):2050117. doi:10.1142/S0218126620501170
10.1142/S0218126620501170 Google Scholar
- 19Dhanamjayulu C, Sanjeevikumar P, Palanisamy K, Blaabjerg F, Maroti PK. A Novel Nine and Seventeen-Step Multilevel Inverters with Condensed Switch Count. In: 2020 IEEE 21st workshop on control and modeling for power electronics (COMPEL); 2020: 1-6. doi:10.1109/COMPEL49091.2020.9265852
10.1109/COMPEL49091.2020.9265852 Google Scholar
- 20Siddique MD, Iqbal A, Memon MA, Mekhilef S. A new configurable topology for multilevel inverter with reduced switching components. IEEE Access. 2020; 8: 188726-188741. doi:10.1109/ACCESS.2020.3030951
- 21Sathik MJ, Almakhles DJ, Sandeep N, Siddique MD. Experimental validation of new self-voltage balanced 9L-ANPC inverter for photovoltaic applications. Sci Rep. 2021; 11(1): 5067. doi:10.1038/s41598-021-84531-z
- 22Siddique MD, Reddy BP, Iqbal A, Mekhilef S. A new family of boost active neutral point clamped inverter topology with reduced switch count. IET Power Electron. 2021; 14(8): 1433-1443. doi:10.1049/pel2.12121
- 23Bhatnagar P, Agrawal R, Kumar Dewangan N, Jain SK, Kumar Gupta K. Switched capacitors 9-level module (SC9LM) with reduced device count for multilevel DC to AC power conversion. IET Electr Power Appl. 2019; 13(10): 1544-1552. doi:10.1049/iet-epa.2019.0053
- 24Sekar RM, Nelson Jayakumar D, Mylsamy K, Subramaniam U, Padmanaban S. Single phase nine level inverter using single DC source supported by capacitor voltage balancing algorithm. IET Power Electron. 2018; 11(14): 2319-2329. doi:10.1049/iet-pel.2018.5060
- 25Sharifzadeh M, Al-Haddad K. Packed E-cell (PEC) converter topology operation and experimental validation. IEEE Access. 2019; 7: 93049-93061. doi:10.1109/ACCESS.2019.2924009
- 26Noghani KA, Abarzadeh M, Javadi A, Al-Haddad K. A novel inter-modulated floating carrier level shifted PWM method for PUC9 converter. IEEE Energy Convers Congr Expo. 2021; 2021: 2633-2639. doi:10.1109/ECCE47101.2021.9595793
10.1109/ECCE47101.2021.9595793 Google Scholar
- 27Alquennah AN, Trabelsi M, Rayane K, Vahedi H, Abu-Rub H. Real-time implementation of an optimized model predictive control for a 9-level CSC inverter in grid-connected mode. Sustainability. 2021; 13(15): 8119. doi:10.3390/su13158119
- 28Niu D, Gao F, Wang P, Zhou K, Qin F, Ma Z. A nine-level T-type packed U-cell inverter. IEEE Trans Power Electron. 2020; 35(2): 1171-1175. doi:10.1109/TPEL.2019.2931523
- 29Vahedi H, Labbé P, Al-Haddad K. Sensor-less five-level packed U-cell (PUC5) inverter operating in stand-alone and grid-connected modes. IEEE Trans Industr Inform. 2016; 12(1): 361-370. doi:10.1109/TII.2015.2491260
- 30Chatterjee S, Das A. A review on technological aspects of different PWM techniques and its comparison based on different performance parameters. Int J Circ Theor Appl. 2022; 51(5): 1-53. doi:10.1002/cta.3513
- 31Sakile R, Bhanuchandar A, Kumar KB, Vamshy D, Supriya B, Palle K. A Nearest Level Control Scheme for Reduced Switch Count Cascaded Half-Bridge Based Multilevel DC Link Inverter Topology. In: 2021 8th international conference on signal processing and integrated networks (SPIN), Noida, India; 2021: 287-292. doi:10.1109/SPIN52536.2021.9566056
10.1109/SPIN52536.2021.9566056 Google Scholar
- 32Ahmadi D, Zou K, Li C, Huang Y, Wang J. A universal selective harmonic elimination method for high-power inverters. IEEE Trans Power Electron. 2011; 26(10): 2743-2752. doi:10.1109/TPEL.2011.2116042
- 33Gupta KK, Jain S. A novel universal control scheme for multilevel inverters. In: 6th IET international conference on power electronics, machines and drives (PEMD 2012); 2012: 1-6. doi:10.1049/cp.2012.0176
10.1049/cp.2012.0176 Google Scholar
- 34Kumar KB, Bhanuchandar A, Supriya B, Vamshy D, Palle K, Sakile R. A Unipolar Phase Disposition Pulse Width Modulation Technique for an Asymmetrical Multilevel Inverter Topology. In: 2021 IEEE international conference on intelligent systems, smart and green technologies (ICISSGT), Visakhapatnam, India; 2021: 156-161. doi:10.1109/ICISSGT52025.2021.00041
10.1109/ICISSGT52025.2021.00041 Google Scholar
- 35Rodriguez J, Cortes P. Model Predictive Control. In: Predictive control of power converters and electrical drives. IEEE; 2012: 31-39. doi:10.1002/9781119941446.ch3
10.1002/9781119941446.ch3 Google Scholar
- 36Yaramasu V, Wu B. Overview of Digital Control Techniques. In: Model predictive control of wind energy conversion systems. IEEE; 2017: 91-116. doi:10.1002/9781119082989.ch3
10.1002/9781119082989.ch3 Google Scholar
- 37Kouro S, Cortes P, Vargas R, Ammann U, Rodriguez J. Model predictive control—a simple and powerful method to control power converters. IEEE Trans Ind Electron. 2009; 56(6): 1826-1838. doi:10.1109/TIE.2008.2008349
- 38Barzegarkhoo R, Khan SA, Siwakoti YP, Aguilera RP, Lee SS, Khan MNH. Implementation and analysis of a novel switched-boost common-ground five-level inverter modulated with model predictive control strategy. IEEE J Emerg Sel Top Power Electron. 2022; 10(1): 731-744. doi:10.1109/JESTPE.2021.3068406
- 39Sebaaly F, Vahedi H, Kanaan HY, Al-Haddad K. Experimental Design of Fixed Switching Frequency Model Predictive Control for Sensorless five-level packed U-cell inverter. IEEE Trans Ind Electron. 2019; 66(5): 3427-3434. doi:10.1109/TIE.2018.2854586
- 40Zainal S, Aziz J, Ahmed SS. Single carrier PWM scheme for cascaded multilevel voltage source inverter. In: The fifth international conference on power electronics and drive systems, 2003. PEDS 2003. Vol. 1; 2003: 406-410. doi:10.1109/PEDS.2003.1283164
10.1109/PEDS.2003.1283164 Google Scholar
- 41Ghias AMYM, Pou J, Capella GJ, Agelidis VG, Aguilera RP, Meynard T. Single-carrier phase-disposition PWM implementation for multilevel flying capacitor converters. IEEE Trans Power Electron. 2015; 30(10): 5376-5380. doi:10.1109/TPEL.2015.2427201
- 42Dhara S, Somasekhar VT. A Nine-Level Transformerless Boost Inverter with Leakage Current Reduction and Fractional Direct Power Transfer Capability for PV Applications. In: IEEE journal of emerging and selected topics in power electronics. doi:10.1109/JESTPE.2021.3074701
10.1109/JESTPE.2021.3074701 Google Scholar
- 43Abarzadeh M, Peyghami S, Al-Haddad K, Weise N, Chang L, Blaabjerg F. Reliability and performance improvement of PUC converter using a new single-carrier sensor-less PWM method with pseudo reference functions. IEEE Trans Power Electron. 2021; 36(5): 6092-6105. doi:10.1109/TPEL.2020.3030698
- 44Lingom PM, Song-Manguelle J, Flesch RCC, Jin T. A generalized single-carrier PWM scheme for multilevel converters. IEEE Trans Power Electron. 2021; 36(10): 12112-12126. doi:10.1109/TPEL.2021.3073748
- 45Agarwal R, Gupta KK, Singh S. A double boost 9-level switched capacitor-based multilevel inverter for photovoltaic applications. Int J Circ Theor Appl. 2023; 51(7): 1-28. doi:10.1002/cta.3596
- 46Sarwer Z, Anwar MN, Sarwar A. A nine-level common ground multilevel inverter (9L-CGMLI) with reduced components and boosting ability. Int J Circ Theor Appl. 2023; 51(8): 1-15. doi:10.1002/cta.3550
- 47Singh Neti S, Singh V. A common ground switched capacitor-based single-phase five-level transformerless inverter for photovoltaic application. Int J Circ Theor Appl. 2023; 51(6): 1-21. doi:10.1002/cta.3552
- 48Bhanuchandar A, Murthy BK. Switched Capacitor Based 13-Level Boosting Grid Connected Inverter with LCL Filter. In: 2021 National Power Electronics Conference (NPEC), Bhubaneswar, India; 2021: 01-06. doi:10.1109/NPEC52100.2021.9672544
10.1109/NPEC52100.2021.9672544 Google Scholar
- 49Asadi F, Eguchi K. Chapter 5 - Thermal analysis of power electronics converters with PLECS. In: F Asadi, K Eguchi, eds. Simulation of power electronics converters using PLECS®. Academic Press; 2020: 299-363, ISBN 9780128173640. doi:10.1016/B978-0-12-817364-0.00005-9
10.1016/B978-0-12-817364-0.00005-9 Google Scholar