Macrocycle-Mediated 3D-to-2D Structural Transformation of a Metal−Organic Framework through Coordination Bond Rearrangement
Wencai Li
Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei, 430081 China
Search for more papers by this authorYinghao Xu
Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei, 430081 China
Search for more papers by this authorCorresponding Author
Simin Liu
Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei, 430081 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Qingqing Pang
Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei, 430081 China
E-mail: [email protected]; [email protected]Search for more papers by this authorWencai Li
Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei, 430081 China
Search for more papers by this authorYinghao Xu
Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei, 430081 China
Search for more papers by this authorCorresponding Author
Simin Liu
Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei, 430081 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Qingqing Pang
Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei, 430081 China
E-mail: [email protected]; [email protected]Search for more papers by this authorComprehensive Summary
Structural transformation of metal−organic frameworks (MOFs) involving significant rearrangement of coordination bonds represents a powerful strategy to construct novel structures with distinct functionalities. While such transformations are typically driven by solvent, ion, or heat stimuli, the potential of functional macrocycles to trigger framework reconstruction remains unexplored. Herein, we disclose the first macrocycle-mediated dimensional reduction of a MOF, where the introduction of cucurbit[6]uril (CB[6]) induces 3D-to-2D structural transformation through a dissolution-recrystallization mechanism. This transformation involves the breakage and reformation of coordination bonds and the incorporation of CB[6] within the framework through multiple outer-surface interactions. The resultant 2D layered framework (CB[6]@Zn-TCA-L) demonstrates enhanced stability in aqueous solutions, attributed to the ordered arrangement of CB[6] macrocycles with the encapsulation of Me2NH2+ cations in their cavities. Furthermore, the combination of its 2D layered structure featuring accessible Lewis acidic metal sites and abundant active sites on the CB[6] surface enables CB[6]@Zn-TCA-L to function as a highly efficient catalyst for the cycloaddition of CO2 with various epoxides under mild conditions.
Supporting Information
Filename | Description |
---|---|
cjoc202500430-sup-0001-supinfo.pdfPDF document, 5.8 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Kole, G. K.; Vittal, J. J. Solid-State Reactivity and Structural Transformations Involving Coordination Polymers. Chem. Soc. Rev. 2013, 42, 1755–1775.
- 2 Vittal, J. J.; Quah, H. S. Engineering Solid State Structural Transformations of Metal Complexes. Coord. Chem. Rev. 2017, 342, 1–18.
- 3 Kalmutzki, M. J.; Hanikel, N.; Yaghi, O. M. Secondary Building Units as the Turning Point in the Development of the Reticular Chemistry of MOFs. Sci. Adv. 2018, 4, eaat9180.
- 4 Jiao, L.; Seow, J. Y. R.; Skinner, W. S.; Wang, Z. U.; Jiang, H.-L. Metal–Organic Frameworks: Structures and Functional Applications. Mater. Today 2019, 27, 43–68.
- 5 Ryu, U.; Jee, S.; Rao, P. C.; Shin, J.; Ko, C.; Yoon, M.; Park, K. S.; Choi, K. M. Recent Advances in Process Engineering and Upcoming Applications of Metal–Organic Frameworks. Coord. Chem. Rev. 2021, 426, 213544.
- 6 Fernandez-Bartolome, E.; Martinez-Martinez, A.; Resines-Urien, E.; Piñeiro-Lopez, L.; Costa, J. S. Reversible Single-Crystal-to-Single- Crystal Transformations in Coordination Compounds Induced by External Stimuli. Coord. Chem. Rev. 2022, 452, 214281.
- 7 Liu, Z.; Zhang, L.; Sun, D. Stimuli-Responsive Structural Changes in Metal–Organic Frameworks. Chem. Commun. 2020, 56, 9416–9432.
- 8 Zhang, J.-P.; Zhou, H.-L.; Zhou, D.-D.; Liao, P.-Q.; Chen, X.-M. Controlling Flexibility of Metal–Organic Frameworks. Natl. Sci. Rev. 2018, 5, 907–919.
- 9 Pang, Q.; Tu, B.; Yang, L.; Li, Q. Photochemical Cycloaddition and Temperature-Dependent Breathing in Pillared-Layer Metal–Organic Frameworks. Sci. Bull. 2019, 64, 1881–1889.
- 10 Jin, Q.-Y.; Meng, L.; Zhang, Z.-H.; Liang, Y.-Y.; Jin, W.; Hu, K.-Q.; Yuan, L.-Y.; Chai, Z.-F.; Mei, L.; Shi, W.-Q. Dual Response to Light and Heat of a Metal–Organic Rotaxane Network Featuring Flexible Viologen- Derived Structs. Adv. Funct. Mater. 2023, 33, 2303530.
- 11 Seth, S.; Jhulki, S. Porous Flexible Frameworks: Origins of Flexibility and Applications. Mater. Horiz. 2021, 8, 700–727.
- 12 Krause, S.; Hosono, N.; Kitagawa, S. Chemistry of Soft Porous Crystals: Structural Dynamics and Gas Adsorption Properties. Angew. Chem. Int. Ed. 2020, 59, 15325–15341.
- 13 Jiang, Z.-J.; Wang, Y.; Luo, D.; Wei, R.-J.; Lu, W.; Li, D. Dehydration- Induced Cluster Consolidation in a Metal–Organic Framework for Sieving Hexane Isomers. Angew. Chem. Int. Ed. 2024, 63, e202403209.
- 14 Li, N.; Pang, J.; Lang, F.; Bu, X.-H. Flexible Metal–Organic Frameworks: From Local Structural Design to Functional Realization. Acc. Chem. Res. 2024, 57, 2279–2292.
- 15 Tan, F.; López-Periago, A.; Light, M. E.; Cirera, J.; Ruiz, E.; Borrás, A.; Teixidor, F.; Viñas, C.; Domingo, C.; Planas, J. G. An Unprecedented Stimuli-Controlled Single-Crystal Reversible Phase Transition of a Metal–Organic Framework and Its Application to a Novel Method of Guest Encapsulation. Adv. Mater. 2018, 30, 1800726.
- 16 Lo, S.-H.; Feng, L.; Tan, K.; Huang, Z.; Yuan, S.; Wang, K.-Y.; Li, B.-H.; Liu, W.-L.; Day, G. S.; Tao, S.; Yang, C.-C.; Luo, T.-T.; Lin, C.-H.; Wang, S.-L.; Billinge, S. J. L.; Lu, K.-L.; Chabal, Y. J.; Zou, X.; Zhou, H.-C. Rapid Desolvation-Triggered Domino Lattice Rearrangement in a Metal–Organic Framework. Nat. Chem. 2020, 12, 90–97.
- 17 Fang, H.; Liu, X.-Y.; Ding, H.-J.; Mulcair, M.; Space, B.; Huang, H.; Li, X.-W.; Zhang, S.-M.; Yu, M.-H.; Chang, Z.; Bu, X.-H. Stimulus-Induced Dynamic Behavior Regulation of Flexible Crystals Through the Tuning of Module Rigidity. J. Am. Chem. Soc. 2024, 146, 14357–14367.
- 18 Dai, F.; Wang, X.; Wang, Y.; Liu, Z.; Sun, D. Sequential Solid-State Transformations Involving Consecutive Rearrangements of Secondary Building Units in a Metal–Organic Framework (MOF). Angew. Chem. Int. Ed. 2020, 59, 22372–22377.
- 19 Won, S.; Jeong, S.; Kim, D.; Seong, J.; Lim, J.; Moon, D.; Baek, S. B.; Lah, M. S. Transformation of a Cluster-Based Metal–Organic Framework to a Rod Metal–Organic Framework. Chem. Mater. 2022, 34, 273–278.
- 20 Jing, Y.; Yoshida, Y.; Komatsu, T.; Kitagawa, H. A Significant Two-Dimensional Structural Transformation in a Coordination Polymer That Changes Its Electronic and Protonic Behavior. Angew. Chem. Int. Ed. 2023, 62, e202303778.
- 21 Li, Y.; Li, H.; Zou, S.; Liu, Y.; Li, H.; Ji, Z.; Di, Z.; Chen, C.; Wu, M. Anion- Induced Structural Transformation of a Cage-Based Metal–Organic Framework. Cryst. Growth Des. 2023, 23, 2264–2271.
- 22 Cui, Y.; Lu, H.; Hou, H.; Bai, Y.; Yang, J.; Li, Y.; Qiu, J.; Wang, S.; Lin, J. Dissolution-Recrystallization: A Novel Mechanism for Fluorochromic Detection of Th4+ Using Color-Tunable Luminescent Metal–Organic Frameworks. Angew. Chem. Int. Ed. 2024, 63, e202410453.
- 23 Isaacs, L. Cucurbit[n]urils: From Mechanism to Structure and Function. Chem. Commun. 2009, 619–629.
- 24 Masson, E.; Ling, X.; Joseph, R.; Kyeremeh-Mensah, L.; Lu, X. Cucurbituril Chemistry: A Tale of Supramolecular Success. RSC Adv. 2012, 2, 1213–1247.
- 25 Yang, X.; Liu, F.; Zhao, Z.; Liang, F.; Zhang, H.; Liu, S. Cucurbit[10]uril- Based Chemistry. Chin. Chem. Lett. 2018, 29, 1560–1566.
- 26 Ni, X.-L.; Xiao, X.; Cong, H.; Zhu, Q.-J.; Xue, S.-F.; Tao, Z. Self-Assemblies Based on the “Outer-Surface Interactions” of Cucurbit[n]urils: New Opportunities for Supramolecular Architectures and Materials. Acc. Chem. Res. 2014, 47, 1386–1395.
- 27 Huang, Y.; Gao, R.-H.; Liu, M.; Chen, L.-X.; Ni, X.-L.; Xiao, X.; Cong, H.; Zhu, Q.-J.; Chen, K.; Tao, Z. Cucurbit[n]uril-Based Supramolecular Frameworks Assembled Through Outer-Surface Interactions. Angew. Chem. Int. Ed. 2021, 60, 15166–15191.
- 28 Mock, W. L.; Shih, N.-Y. Structure and Selectivity in Host–Guest Complexes of Cucurbituril. J. Org. Chem. 1986, 51, 4440–4446.
- 29 Assaf, K. I.; Nau, W. M. Cucurbiturils: From Synthesis to High-Affinity Binding and Catalysis. Chem. Soc. Rev. 2015, 44, 394–418.
- 30 Nie, H.; Wei, Z.; Ni, X.-L.; Liu, Y. Assembly and Applications of Macrocyclic-Confinement-Derived Supramolecular Organic Luminescent Emissions from Cucurbiturils. Chem. Rev. 2022, 122, 9032–9077.
- 31 Liu, M.; Cen, R.; Li, J.; Li, Q.; Tao, Z.; Xiao, X.; Isaacs, L. Double-Cavity Nor-Seco-Cucurbit[10]uril Enables Efficient and Rapid Separation of Pyridine from Mixtures of Toluene, Benzene, and Pyridine. Angew. Chem. Int. Ed. 2022, 61, e202207209.
- 32 Wu, W.; Xu, Y.; Wang, S.; Pang, Q.; Liu, S. Metal–Organic Rotaxane Frameworks Constructed from a Cucurbit[8]uril-Based Ternary Complex for the Selective Detection of Antibiotics. Chem. Commun. 2023, 59, 5890–5893.
- 33 Feng, L.; Wang, K.-Y.; Day, G. S.; Ryder, M. R.; Zhou, H.-C. Destruction of Metal–Organic Frameworks: Positive and Negative Aspects of Stability and Lability. Chem. Rev. 2020, 120, 13087–13133.
- 34 Yuan, S.; Feng, L.; Wang, K.; Pang, J.; Bosch, M.; Lollar, C.; Sun, Y.; Qin, J.; Yang, X.; Zhang, P.; Wang, Q.; Zou, L.; Zhang, Y.; Zhang, L.; Fang, Y.; Li, J.; Zhou, H.-C. Stable Metal–Organic Frameworks: Design, Synthesis, and Applications. Adv. Mater. 2018, 30, 1704303.
- 35 Ding, M.; Cai, X.; Jiang, H.-L. Improving MOF Stability: Approaches and Applications. Chem. Sci. 2019, 10, 10209–10230.
- 36 Xie, L.-H.; Xu, M.-M.; Liu, X.-M.; Zhao, M.-J.; Li, J.-R. Hydrophobic Metal–Organic Frameworks: Assessment, Construction, and Diverse Applications. Adv. Sci. 2020, 7, 1901758.
- 37 Ding, M.; Flaig, R. W.; Jiang, H.-L.; Yaghi, O. M. Carbon Capture and Conversion Using Metal–Organic Frameworks and MOF-Based Materials. Chem. Soc. Rev. 2019, 48, 2783–2828.
- 38 Wu, Q.-J.; Liang, J.; Huang, Y.-B.; Cao, R. Thermo-, Electro-, and Photocatalytic CO2 Conversion to Value-Added Products Over Porous Metal/Covalent Organic Frameworks. Acc. Chem. Res. 2022, 55, 2978–2997.
- 39 Gulati, S.; Vijayan, S.; Mansi; Kumar, S.; Harikumar, B.; Trivedi, M.; Varma, R. S. Recent Advances in the Application of Metal–Organic Frameworks (MOFs)-Based Nanocatalysts for Direct Conversion of Carbon Dioxide (CO2) to Value-Added Chemicals. Coord. Chem. Rev. 2023, 474, 214853.
- 40 Shaikh, R. R.; Pornpraprom, S.; D’Elia, V. Catalytic Strategies for the Cycloaddition of Pure, Diluted, and Waste CO2 to Epoxides Under Ambient Conditions. ACS Catal. 2018, 8, 419–450.
- 41 He, H.; Perman, J. A.; Zhu, G.; Ma, S. Metal–Organic Frameworks for CO2 Chemical Transformations. Small 2016, 12, 6309–6324.
- 42 Pal, T. K.; De, D.; Bharadwaj, P. K. Metal–Organic Frameworks for the Chemical Fixation of CO2 into Cyclic Carbonates. Coord. Chem. Rev. 2020, 408, 213173.
- 43 Guo, L.; Lamb, K. J.; North, M. Recent Developments in Organocatalysed Transformations of Epoxides and Carbon Dioxide into Cyclic Carbonates. Green Chem. 2021, 23, 77–118.
- 44 Dhakshinamoorthy, A.; Asiri, A. M.; Garcia, H. 2D Metal–Organic Frameworks as Multifunctional Materials in Heterogeneous Catalysis and Electro/Photocatalysis. Adv. Mater. 2019, 31, 1900617.
- 45 Zhu, D.; Qiao, M.; Liu, J.; Tao, T.; Guo, C. Engineering Pristine 2D Metal–Organic Framework Nanosheets for Electrocatalysis. J. Mater. Chem. A 2020, 8, 8143–8170.
- 46 Xue, Y.; Zhao, G.; Yang, R.; Chu, F.; Chen, J.; Wang, L.; Huang, X. 2D Metal–Organic Framework-Based Materials for Electrocatalytic, Photocatalytic and Thermocatalytic Applications. Nanoscale 2021, 13, 3911–3936.
- 47 Xu, Y.-T.; Ye, Z.-M.; Liu, D.-X.; Tian, X.-Y.; Zhou, D.-D.; He, C.-T.; Chen, X.-M. Non-3d Metal Modulated Zinc Imidazolate Frameworks for CO2 Cycloaddition in Simulated Flue Gas under Ambient Condition. Chin. Chem. Lett. 2023, 34, 107814.
- 48 Singh, M.; Mondal, P. P.; Rajput, S.; Neogi, S. Contrasting-Functionality-Decked Robust MOF for Moisture-Tolerant and Variable-Temperature CO2 Adsorption with In-Built Urea Group Mediated Mild Condition Cycloaddition. Inorg. Chem. Front. 2023, 10, 3605–3620.