Homochiral Dy2 Schiff Base Complexes Based on (R)/(S)-Chlocyphos: Single-Molecule Magnet Behaviours, Proton Conductivities and MCD Effects
Corresponding Author
Cai-Ming Liu
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Hua-Hong Zou
School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, Guangxi, 541004 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Yi-Quan Zhang
Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing, Jiangsu, 210023 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorXiang Hao
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorXiao-Ming Ren
State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816 China
Search for more papers by this authorCorresponding Author
Cai-Ming Liu
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Hua-Hong Zou
School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, Guangxi, 541004 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Yi-Quan Zhang
Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing, Jiangsu, 210023 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorXiang Hao
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorXiao-Ming Ren
State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816 China
Search for more papers by this authorComprehensive Summary
Chiral proton conductive single-molecule magnets (SMMs) are multifunctional molecular materials that can combine conductor, magnet, and chirality at the nanoscale, but there are still significant challenges to their synthesis. Herein, the hydrazone Schiff base ligand (E)-N′-(2-hydroxybenzylidene)-3-aminopyrazine-2-carbohydrazide (H2LSchiff) and the homochiral ligands (R)-(+)-chlocyphos/ (S)-(−)-chlocyphos (R-HL)/(S-HL) were chosen to assemble a pair of Dy2 enantiomers [Dy2(R-L)2(LSchiff)2(DMA)2]·2.5H2O (R-1) (DMA = N,N-dimethylacetamide) and [Dy2(S-L)2(LSchiff)2(DMA)2]·2.5H2O (S-1) at room temperature. Magnetic investigation indicated that they are field-induced SMMs, with a Ueff/k value of 42.2 K at 1000 Oe, and there is ferromagnetic coupling within the molecule; these magnetic properties may be explained by the ab initio calculations. The presence of a hydrogen bonding network confers the enantiomers proton conductivities. Moreover, R-1 and S-1 show prominent magnetic circular dichroism (MCD) effects at room temperature.
Supporting Information
Filename | Description |
---|---|
cjoc202401318-sup-0001-supinfo.pdfPDF document, 933.2 KB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Coronado, E.; Galan-Mascaros, J. R.; Gomez-Garcia, C. J.; Laukhin, V. Coexistence of ferromagnetism and metallic conductivity in a molecule-based layered compound. Nature 2000, 408, 447–449.
- 2 O¯kawa, H.; Sadakiyo, M.; Yamada, T.; Maesato, M.; Ohba, M.; Kitagawa, H. Proton-Conductive Magnetic Metal-Organic Frameworks, {NR3(CH2COOH)}[MaIIMbIII(ox)3]: Effect of Carboxyl Residue upon Proton Conduction. J. Am. Chem. Soc. 2013, 135, 2256–2262.
- 3 Sessoli, R.; Gatteschi, D.; Caneschi, A.; Novak, M. A. Magnetic Bistability in a Metal-Ion Cluster. Nature 1993, 365, 141–143.
- 4 Zhu, S.-D.; Hu, J.-J.; Dong, L.; Wen, H.-R.; Liu, S.-J.; Lu, Y.-B.; Liu, C.-M. Multifunctional Zn(ii)–Yb(iii) complex enantiomers showing second- harmonic generation, near-infrared luminescence, single-molecule magnet behaviour and proton conduction. J. Mater. Chem. C 2020, 8, 16032–16041.
- 5 Zhu, S.-D.; Dong, L.; Hu, J.-J.; Wen, H.-R.; Lu, Y.-B.; Deng, W.-H.; Liu, C.-M.; Liu, S.-J.; Xu, G.; Fu, Z.-H. A proton conductor showing an indication of single-ion magnet behavior based on a mononuclear Dy(III) complex. J. Mater. Chem. C 2021, 9, 481–488.
- 6 Lu, Y.-B.; Huang, J.; Liao, Y.-Q.; Lin, X.-L.; Huang, S.-Y.; Liu, C.-M.; Wen, H.-R.; Liu, S.-J.; Wang, F.-Y.; Zhu, S.-D. Multifunctional Dinuclear Dy-Based Coordination Complex Showing Visible Photoluminescence, Single-Molecule Magnet Behavior, and Proton Conduction. Inorg. Chem. 2022, 61, 18545–18553.
- 7 Shao, D.; Tang, W.-J.; Ruan, Z.; Yang, X.; Shi, L.; Wei, X.-Q.; Tian, Z.; Kumaric K.; Singh, S. K. Water-driven reversible switching of single- ion magnetism and proton conduction in a dysprosium sulfonate. Inorg. Chem. Front. 2022, 9, 6147–6157.
- 8 Wen, H.-R.; Hu, J.-J.; Yang, K.; Zhang, J.-L.; Liu, S.-J.; Liao, J.-S.; Liu, C.-M. Family of Chiral ZnII-LnIII (Ln = Dy and Tb) Heterometallic Complexes Derived from the Amine-Phenol Ligand Showing Multifunctional Properties. Inorg. Chem. 2020, 59, 2811–2824.
- 9 Liu, C.-M.; Zhang, D.-Q.; Xiong, R.-G.; Hao, X.; Zhu, D.-B. A homochiral Zn-Dy heterometallic left-handed helical chain complex without chiral ligands: anion-induced assembly and multifunctional integration. Chem. Commun. 2018, 54, 13379–13382.
- 10 Li, X.-L.; Wang, A.; Cui, M.; Gao, C.; Yu, X.; Su, B.; Zhou, L.; Liu, C.-M.; Xiao, H.-P.; Zhang, Y.-Q. Modulating Two Pairs of Chiral DyIII Enantiomers by Distinct β-Diketone Ligands to Show Giant Differences in Single-Ion Magnet Performance and Nonlinear Optical Response. Inorg. Chem. 2022, 61, 9283–9294.
- 11 Liu, C.-M.; Sun, R.; Wang, B.-W.; Hao, X.; Li, X.-L. Effects of Counterions, Coordination Anions, and Coordination Solvent Molecules on Single-Molecule Magnetic Behaviors and Nonlinear Optical Properties of Chiral Zn2Dy Schiff Base Complexes. Inorg. Chem. 2022, 61, 18510–18523.
- 12 Long, J.; Ivanov, M. S.; Khomchenko, V. A.; Mamontova, E.; Thibaud, J. M.; Rouquette, J.; Beaudhuin, M.; Granier, D.; Ferreira, R. A. S.; Carlos, L. D.; Donnadieu, B.; Henriques, M. S. C.; Paixao, J. A.; Guari, Y.; Larionova, J. Room temperature magnetoelectric coupling in a molecular ferroelectric ytterbium(III) complex. Science 2020, 367, 671–676.
- 13 Li, D.-P.; Wang, T.-W.; Li, C.-H.; Liu, D.-S.; Li, Y.-Z.; You, X.-Z. Single-ion magnets based on mononuclear lanthanide complexes with chiral Schiff base ligands [Ln(FTA)3L] (Ln = Sm, Eu, Gd, Tb and Dy). Chem. Commun. 2010, 46, 2929–2931.
- 14 Li, X.-L.; Chen, C.-L.; Gao, Y.-L.; Liu, C.-M.; Feng, X.-L.; Gui, Y.-H.; Fang, S.-M. Modulation of Homochiral DyIII Complexes: Single-Molecule Magnets with Ferroelectric Properties. Chem. Eur. J. 2012, 18, 14632–14637.
- 15 Li, X.-L.; Hu, M.; Yin, Z.; Zhu, C.; Liu, C.-M.; Xiao, H.-P.; Fang, S. Enhanced single-ion magnetic and ferroelectric properties of mononuclear Dy(III) enantiomeric pairs through the coordination role of chiral ligands. Chem. Commun. 2017, 53, 3998–4001.
- 16 Guo, P.-H.; Liu, J.-L.; Jia, J.-H.; Wang, J.; Guo, F.-S.; Chen, Y.-C.; Lin, W.-Q.; Leng, J.-D.; Bao, D.-H.; Zhang, X.-D.; Luo, J.-H.; Tong, M.-L. Multifunctional DyIII4 Cluster Exhibiting White-Emitting, Ferroelectric and Single-Molecule Magnet Behavior. Chem. Eur. J. 2013, 19, 8769–8773.
- 17 Akiyoshi, R.; Zenno, H.; Sekine, Y.; Nakaya, M.; Akita, M.; Kosumi, D.; Lindoy, L. F.; Hayami, S. A. Ferroelectric Metallomesogen Exhibiting Field-Induced Slow Magnetic Relaxation. Chem. Eur. J. 2022, 28, e202103367.
- 18 Huang, H.; Sun, R.; Wu, X.-F.; Liu, Y.; Zhan, J.-Z.; Wang, B.-W.; Gao, S. Circularly polarized luminescence and magneto-optic effects from chiral Dy(III) single molecule magnets. Dalton Trans. 2023, 52, 7646–7651.
- 19 Dhbaibi, K.; Grasser, M.; Douib, H.; Dorcet, V.; Cador, O.; Vanthuyne, N.; Riobé, F.; Maury, O.; Guy, S.; Bensalah-Ledoux, A.; Baguenard, B.; Rikken, G. L. J. A.; Train, C.; Le Guennic, B.; Atzori, M.; Pointillart, F.; Crassous, J. Multifunctional Helicene-Based Ytterbium Coordination Polymer Displaying Circularly Polarized Luminescence, Slow Magnetic Relaxation and Room Temperature Magneto-Chiral Dichroism. Angew. Chem. Int. Ed 2023, 62, e202215558.
- 20
Rez, B. E.; Liu, J.; Béreau, V.; Duhayon, C.; Horino, Y.; Suzuki, T.; Coolen, L.; Sutter, J.-P. Concomitant emergence of circularly polarized luminescence and single-molecule magnet behavior in chiral-at-metal Dy complex. Inorg. Chem. Front. 2020, 7, 4527–4534.
10.1039/D0QI00919A Google Scholar
- 21 Mattei, C. A.; Montigaud, V.; Gendron, F.; Denis-Quanquin, S.; Dorcet, V.; Giraud, N.; Riobé, F.; Argouarch, G.; Maury, O.; Le Guennic, B.; Cador, O.; Lalli, C.; Pointillart, F. Solid-state versus solution investigation of a luminescent chiral BINOL-derived bisphosphate single-molecule magnet. Inorg. Chem. Front. 2021, 8, 947–962.
- 22 Lefeuvre, B.; Mattei, C. A.; Gonzalez, J. F.; Gendron, F.; Dorcet, V.; Riobé, F.; Lalli, C.; Le Guennic, B.; Cador, O.; Maury, O.; Guy, S.; Bensalah-Ledoux, A.; Baguenard, B.; Pointillart, F. Solid-State Near-Infrared Circularly Polarized Luminescence from Chiral YbIII-Single- Molecule Magnet. Chem. Eur. J. 2021, 27, 7362–7366.
- 23 Atzori, M.; Dhbaibi, K.; Douib, H.; Grasser, M.; Dorcet, V.; Breslavetz, I. B. Helicene-Based Ligands Enable Strong Magneto-Chiral Dichroism in a Chiral Ytterbium Complex. J. Am. Chem. Soc. 2021, 143, 2671–2675.
- 24 Miao, L.; Liu, M.-J.; Zeng, M.; Kou, H.-Z. Chiral Zn3Ln3 Hexanuclear Clusters of an Achiral Flexible Ligand. Inorg. Chem. 2023, 62, 12814–12821.
- 25 Liu, C.-M.; Zhang, D.-Q.; Hao, X.; Zhu, D.-B. Assembly of chiral 3d-4f wheel-like cluster complexes with achiral ligands: single-molecule magnetic behavior and magnetocaloric effect. Inorg. Chem. Front. 2020, 7, 3340–3351.
- 26 Zhu, Z.; Zhao, C.; Feng, T.; Liu, X.; Ying, X.; Li, X.-L.; Zhang, Y.-Q.; Tang, J. Air-Stable Chiral Single-Molecule Magnets with Record Anisotropy Barrier Exceeding 1800 K. J. Am. Chem. Soc. 2021, 143, 10077–10082.
- 27 Zhu, Y.-Y.; Cui, C.; Zhang, Y.-Q.; Jia, J.-H.; Guo, X.; Gao, C.; Qian, K.; Jiang, S.-D.; Wang, B.-W.; Wang, Z.-M.; Gao, S. Zero-field slow magnetic relaxation from single Co(ii) ion: a transition metal single-molecule magnet with high anisotropy barrier. Chem. Sci. 2013, 4, 1802–1806.
- 28 Yao, M.-X.; Zheng, Q.; Gao, F.; Li, Y.-Z.; Song, Y.; Zuo, J.-L. Field-induced slow magnetic relaxation in chiral seven-coordinated mononuclear lanthanide complexes. Dalton Trans. 2012, 41, 13682–13690.
- 29 Li, G.; Zhao, X.; Han, Q.; Wang, L.; Liu, W. Radii-dependent self-assembly of chiral lanthanide complexes: synthesis, chirality, and single-molecule magnet behavior. Dalton Trans. 2020, 49, 10120–10126.
- 30 Long, B.-F.; Yu, S.; Zhu, Z.-H.; Li, Y.-L.; Liang, F.-P.; Zou, H.-H. Coordination site manipulation of the annular growth mechanism to assemble chiral lanthanide clusters with different shapes and magnetic properties. Inorg. Chem. Front. 2022, 9, 5950–5959.
- 31 Liu, C.-M.; Zhang, D.; Hao, X.; Zhu, D. Enantiopure Chiral Two-dimensional Sinusoidal Lanthanide(III) Coordination Polymers Based on R-/S-2-Methylglutarate: Luminescence, Magnetic Entropy Change, and Magnetic Relaxation. Cryst. Growth Des. 2019, 19, 4731–4737.
- 32 Han, T.; Leng, J.-D.; Ding, Y.-S.; Wang, Y.; Zheng, Z.; Zheng, Y.-Z. Field and dilution effects on the magnetic relaxation behaviours of a 1D dysprosium(III)-carboxylate chain built from chiral ligands. Dalton Trans. 2015, 44, 13480–13484.
- 33 Casanovas, B.; Speed, S.; El Fallah, M. S.; Vicente, R.; Font-Bardía, M.; Zinna, F.; Di Bari, L. Chiral dinuclear Ln(iii) complexes derived from S- and R-2-(6-methoxy-2-naphthyl)propionate. Optical and magnetic properties. Dalton Trans. 2019, 48, 2059–2067.
- 34 Liu, C.-M.; Zhang, D.; Zhu, D. Field-Induced Single-Ion Magnets Based on Enantiopure Chiral β-Diketonate Ligands. Inorg. Chem. 2013, 52, 8933–8940.
- 35 Feng, J.-S.; Ren, M.; Cai, Z.-S.; Fan, K.; Bao, S.-S. Zheng, L.-M. Enantiopure phosphonic acids as chiral inducers: homochiral crystallization of cobalt coordination polymers showing field-induced slow magnetization relaxation. Chem. Commun. 2016, 52, 6877–6880.
- 36 Feng, M.; Lyu, B.-H.; Wang, M.-H.; Wu, W.-W.; Chen, Y.-C.; Huang, G.-Z.; Lin, W.-Q.; Wu, S.-G.; Liu, J.-L.; Tong, M.-L. Chiral Erbium(III) Complexes: Single-Molecule Magnet Behavior, Chirality, and Nuclearity Control. Inorg. Chem. 2019, 58, 10694–10703.
- 37 Zhu, Z.; Zhao, C.; Zhou, Q.; Liu, S.; Li, X.-L. Mansikkamäki, A.; Tang, J. Air-Stable Dy(III)-Macrocycle Enantiomers: From Chiral to Polar Space Group. CCS Chem. 2022, 4, 3762–3771.
- 38 Lang, W.-J.; Kurmoo, M.; Zeng, M.-H. A Chiral and Polar Single-Molecule Magnet: Synthesis, Structure, and Tracking of Its Formation Using Mass Spectrometry. Inorg. Chem. 2019, 58, 7236–7242.
- 39 Woodruff, D. N.; Winpenny, R. E. P.; Layfield, R. A. Lanthanide Single- Molecule Magnets. Chem. Rev. 2013, 113, 5110–5148.
- 40(a) Meng, Y.-S.; Jiang, S.-D.; Wang, B.-W.; Gao, S. Understanding the Magnetic Anisotropy toward Single-Ion Magnets. Acc. Chem. Res. 2016, 49, 2381–2389; (b) Ding, Y.-S.; Chen, Q.-W.; Huang, J.-Q.; Zhu, X.-F.; Zheng, Z. Sandwich-Type Single-Molecule Magnets Complexes of Er(III) with Ansa-Cyclooctatetraenyl Ligands. Chin. J. Chem. 2024, 42, 3099–3106; (c) Luo, Q.-C.; Yu, K.-X.; Jin, P.-B.; Liu, Y.-Y.; Zhai, Y.-Q.; Zheng, Y.-Z. Strong Antiferromagnetic Exchange-Coupling Observed in Hydride-Bridged Dimeric Dysprosium(III) Single-Molecule Magnet. Chin. J. Chem. 2024, 42, 391–396.
- 41 Ye, Y.; Zhang, L. Q.; Peng, Q. F.; Wang, G. E.; Shen, Y. C.; Li, Z. Y.; Wang, L. H.; Ma, X. Y.; Chen, Q. H.; Zhang, Z. J.; Xiang, S. C. High Anhydrous Proton Conductivity of Imidazole-Loaded Mesoporous Polyimides over a Wide Range from Subzero to Moderate Temperature. J. Am. Chem. Soc. 2015, 137, 913–918.
- 42 Luo, H. B.; Ren, Q.; Wang, P.; Zhang, J.; Wang, L. F.; Ren, X. M. High Proton Conductivity Achieved by Encapsulation of Imidazole Molecules into Proton-Conducting MOF-808. ACS Appl. Mater. Interfaces 2019, 11, 9164–9171.
- 43 Nguyen, M. V.; Lo, T. H. N.; Luu, L. C.; Nguyen, H. T. T.; Tu, T. N. Enhancing proton conductivity in a metal-organic framework at T > 80 °C by an anchoring strategy. J. Mater. Chem. A 2018, 6, 1816–1821.
- 44 Zhang, B.-W.; Yin, J.; Gao, H.-L.; Cui, J.-Z. Synthesis, luminescence and magnetic properties of dinuclear complexes based on a “pincer” Schiff base and different β-diketonate ligands. Polyhedron 2023, 233, 116298.
- 45 Liu, C.-M.; Xiong, R.-G.; Zhang, D.-Q.; Zhu, D.-B. Nanoscale Homochiral C3-Symmetric Mixed-Valence Manganese Cluster Complexes with Both Ferromagnetic and Ferroelectric Properties. J. Am. Chem. Soc. 2010, 132, 4044–4045.
- 46 Casanova, D.; Llunell, M.; Alemany, P.; Alvarez, S. The Rich Stereochemistry of Eight-Vertex Polyhedra: a Continuous Shape Measures Study. Chem. Eur. J. 2005, 11, 1479–1494.
- 47 Shao, D.; Wang, X.-Y. Development of Single-Molecule Magnets. Chin. J. Chem. 2020, 38, 1005–1018.
- 48 Guo, Y.-N.; Xu, G.-F.; Gamez, P.; Zhao, L.; Lin, S.-Y.; Deng, R.; Tang, J.; Zhang, H.-J. Two-Step Relaxation in a Linear Tetranuclear Dysprosium(III) Aggregate Showing Single-Molecule Magnet Behavior. J. Am. Chem. Soc. 2010, 132, 8538–8539.
- 49 Liu, C.-M.; Zhang, D.-Q.; Zhu, D.-B. A single-molecule magnet featuring a parallelogram [Dy4(OCH2−)4] core and two magnetic relaxation processes. Dalton Trans. 2013, 42, 14813–14818.
- 50 Langley, S. K.; Chilton, N. F.; Moubaraki, B.; Murray, K. S. Single- Molecule Magnetism in Three Related {Co2IIIDy2III}-Acetylacetonate Complexes with Multiple Relaxation Mechanisms. Inorg. Chem. 2013, 52, 7183–7192.
- 51 Jin, Y.-S.; Liu, C.-M.; Zhang, Y.-Q.; Kou, H.-Z. Trinuclear Dy(III) Single- Molecule Magnets with Two-Step Relaxation. Chin. J. Chem. 2023, 41, 2641–2647.
- 52 Galván, I. F.; Vacher, M.; Alavi, A.; Angeli, C.; Aquilante, F.; Autschbach, J.; Bao, J. J.; Bokarev, S. I.; Bogdanov, N. A.; Carlson, R. K.; Chibotaru, L. F.; Creutzberg, J.; Dattani, N.; Delcey, M. G.; Dong, S. S.; Dreuw, A.; Freitag, L.; Frutos, L. M.; Gagliardi, L.; Gendron, F.; Giussani, A.; González, L.; Grell, G.; Guo, M. Y.; Hoyer, C. E.; Johansson, M.; Keller, S.; Knecht, S.; Kovacevic, G.; Källman, E.; Manni, G. L.; Lundberg, M.; Ma, Y. J.; Mai, S.; Malhado, J. P.; Malmqvist, P. Å.; Marquetand, P.; Mewes, S. A.; Norell, J.; Olivucci, M.; Oppel, M.; Phung, Q. M.; Pierloot, K.; Plasser, F.; Reiher, M.; Sand, A. M.; Schapiro, I.; Sharma, P.; Stein, C. J.; Sørensen, L. K.; Truhlar, D. G.; Ugandi, M.; Ungur, L.; Valentini, A.; Vancoillie, S.; Veryazov, V.; Weser, O.; Wesołowski, T. A.; Widmark, Per-Olof.; Wouters, S.; Zech, A.; Zobel, J. P.; Lindh. R. OpenMolcas: From Source Code to Insight. J. Chem. Theory Comput. 2019, 15, 5925–5964.
- 53 Chibotaru, L. F.; Ungur, L.; Soncini, A. Origin of non-magnetic Kramers doublets in the ground state of dysprosium triangles: Evidence for toroidal magnetic moment. Angew. Chem. Int. Ed. 2008, 47, 4126–4129.
- 54 Ungur, L.; Van den Heuvel, W.; Chibotaru, L. F. Ab initio investigation of the non-collinear magnetic structure and the lowest magnetic excitations in dysprosium triangles. New J. Chem. 2009, 33, 1224–1230.
- 55 Chibotaru, L. F.; Ungur, L.; Aronica, C.; Elmoll, H.; Pilet, G.; Luneau, D. Structure, magnetism and theoretical study of mixed-valent CoII3CoIII4 heptanuclear wheel: Lack of SMM behaviour despite negative magnetic anisotropy. J. Am. Chem. Soc. 2008, 130, 12445–12455.
- 56 Lunghi, A.; Totti, F.; Sessoli, R.; Sanvito, S. The role of anharmonic phonons in under-barrier spin relaxation of single molecule magnets. Nat. Commun. 2017, 8, 14620–14626.
- 57 Lu, F.; Ding, M. M.; Li, J. X.; Wang, B. L.; Zhang, Y. Q. Why lanthanide ErIII SIMs cannot possess huge energy barriers: a theoretical investigation. Dalton Trans. 2020, 49, 14576–14583.
- 58 Lu, F.; Guo, W. X.; Zhang, Y. Q. Largely Enhancing the Blocking Energy Barrier and Temperature of a Linear Cobalt(II) Complex through the Structural Distortion: A Theoretical Exploration. Inorg. Chem. 2022, 61, 295–301.
- 59 Ding, M. M.; Shang, T.; Hu, R.; Zhang, Y. Q. Understanding the magnetic anisotropy for linear sandwich [Er(COT)]+-based compounds: a theoretical investigation. Dalton Trans. 2022, 51, 3295–3303.
- 60 Shang, T.; Lu, F.; Tao, J.; Zhang, Y. Q. Understanding the Magnetic Relaxation Mechanism in Mixed-Valence Dilanthanide Complexes with Metal–Metal Bonding: A Theoretical Investigation. J. Phys. Chem. A 2023, 127, 3088–3095.
- 61 Lines, M. E. Orbital Angular Momentum in the Theory of Paramagnetic Clusters. J. Chem. Phys. 1971, 55, 2977–2984.
- 62 Qin, L.; Yu, Y.-Z.; Liao, P.-Q.; Xue, W.; Zheng, Z.-P.; Chen, X.-M.; Zheng, Y.-Z. A “Molecular Water Pipe”: A Giant Tubular Cluster {Dy72} Exhibits Fast Proton Transport and Slow Magnetic Relaxation. Adv. Mater. 2016, 28, 10772–10779.
- 63(a) Wang, X.; Du, M.-H.; Xu, H.; Long, L.-S.; Kong, X.-J.; Zheng, L.-S. Cocrystallization of Chiral 3d-4f Clusters {Mn10Ln6} and {Mn6Ln2}. Inorg. Chem. 2021, 60, 5925–5930; (b) Liu, C-M.; Sun, R.; Wang, B.-W.; Wu, F.; Hao, X.; Shen, Z. Homochiral Ferromagnetic Coupling Dy2 Single-Molecule Magnets with Strong Magneto-Optical Faraday Effects at Room Temperature. Inorg. Chem. 2021, 60, 12039–12048.