Assembly of Homochiral Titanium-Oxo Clusters Protected by in situ Generated Chiral Ligands for Enhanced Photoelectrochemical Activity
Nahui Huang
Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252000 China
† These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Jinle Hou
Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252000 China
† These authors contributed equally to this work.
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorYe Wang
Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252000 China
Search for more papers by this authorPengfei Fei
Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252000 China
Search for more papers by this authorDongxu Zhang
Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252000 China
Search for more papers by this authorZhi Wang
School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 China
Search for more papers by this authorKonggang Qu
Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252000 China
Search for more papers by this authorCorresponding Author
Xianxi Zhang
Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252000 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Di Sun
School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorNahui Huang
Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252000 China
† These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Jinle Hou
Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252000 China
† These authors contributed equally to this work.
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorYe Wang
Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252000 China
Search for more papers by this authorPengfei Fei
Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252000 China
Search for more papers by this authorDongxu Zhang
Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252000 China
Search for more papers by this authorZhi Wang
School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 China
Search for more papers by this authorKonggang Qu
Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252000 China
Search for more papers by this authorCorresponding Author
Xianxi Zhang
Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252000 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Di Sun
School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorComprehensive Summary
The synthesis of titanium oxo clusters (TOCs) with both chirality and photoactivity is urgently needed to expand their applications. However, this remains a significant challenge due to synthetic difficulties and limitations in chiral ligand selection. In this work, we have isolated two pairs of enantiomeric TOCs, [Ti3(μ3-O)(R/S-L1)2(iPrO)6] (R/S-Ti3; iPrOH = isopropanol, R/S-L1 = R/S-2'-hydroxy-[1,1'- binaphthalen]-2-yl isopropyl hydrogenphosphate) and [Ti4(μ2-O)(μ4-O)(R/S-L2)2(EtO)8] (R/S-Ti4; EtOH = ethanol, R/S-L2 = R/S-2'-hydroxy-[1,1'-binaphthalen]-2-yl ethyl hydrogenphosphate), via an in situ ligand transformation approach. The R/S-L1 and R/S-L2 ligands were obtained by alcoholysis of R/S-L (R/S-1,1'-binaphthyl-2,2'-diyl hydrogenphosphate) in different reaction solvents. These ligands, with additional coordination sites, facilitated the formation of novel TOCs and improved their stability. Importantly, these clusters exhibited exceptional stability in solid state and maintained appreciable stability in solution. Furthermore, the introduction of chiral ligands not only imparts a homochiral nature to R/S-Ti3 and R/S-Ti4 but also confers upon them superior photoelectric properties due to ligand-to-metal charge transfer (LMCT) phenomena, as confirmed by theoretical calculations. This study offers a valuable synthetic strategy for preparing photoactive chiral TOCs, and we anticipate it will inspire new discoveries in the field of chiral metal nanoclusters.
Supporting Information
Filename | Description |
---|---|
cjoc202401117-sup-0001-supinfo.pdfPDF document, 2.1 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Brandt, J. R.; Salerno, F.; Fuchter, M. J. The added value of small- molecule chirality in technological applications. Nat. Rev. Chem. 2017, 1, 0045.
- 2 Wang, Y.; Xu, J.; Wang, Y.; Chen, H.; Wang, Y. Emerging chirality in nanoscience. Chem. Soc. Rev. 2013, 42, 2930–2962.
- 3 MacKenzie, L. E.; Stachelek, P. The twists and turns of chiral chemistry. Nat. Chem. 2021, 13, 521–522.
- 4 Lee, H. E.; Ahn, H. Y.; Mun, J.; Lee, Y. Y.; Kim, M.; Cho, N. H.; Chang, K.; Kim, W. S.; Rho, J.; Nam, K. T. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature 2018, 556, 360–365.
- 5 Ma, W.; Xu, L.; de Moura, A. F.; Wu, X.; Kuang, H.; Xu, C.; Kotov, N. A. Chiral Inorganic Nanostructures. Chem. Rev. 2017, 117, 8041–8093.
- 6 Yeom, J.; Yeom, B.; Chan, H.; Smith, K. W.; Dominguez-Medina, S.; Bahng, J. H.; Zhao, G.; Chang, W. S.; Chang, S. J.; Chuvilin, A.; Melnikau, D.; Rogach, A. L.; Zhang, P.; Link, S.; Král, P.; Kotov, N. A. Chiral templating of self-assembling nanostructures by circularly polarized light. Nat. Mater. 2014, 14, 66–72.
- 7 Xu, L.; Wang, X.; Wang, W.; Sun, M.; Choi, W. J.; Kim, J. Y.; Hao, C.; Li, S.; Qu, A.; Lu, M.; Wu, X.; Colombari, F. M.; Gomes, W. R.; Blanco, A. L.; de Moura, A. F.; Guo, X.; Kuang, H.; Kotov, N. A.; Xu, C. Enantiomer-dependent immunological response to chiral nanoparticles. Nature 2022, 601, 366–373.
- 8 Che, S.; Liu, Z.; Ohsuna, T.; Sakamoto, K.; Terasaki, O.; Tatsumi, T. Synthesis and characterization of chiral mesoporous silica. Nature 2004, 429, 281–284.
- 9 Chakraborty, I.; Pradeep, T. Atomically Precise Clusters of Noble Metals: Emerging Link between Atoms and Nanoparticles. Chem. Rev. 2017, 117, 8208–8271.
- 10 Li, Y.; Higaki, T.; Du, X.; Jin, R. Chirality and Surface Bonding Correlation in Atomically Precise Metal Nanoclusters. Adv. Mater. 2020, 32, 1905488.
- 11 Knoppe, S.; Bürgi, T. Chirality in Thiolate-Protected Gold Clusters. Acc. Chem. Res. 2014, 47, 1318–1326.
- 12 Liu, C.; Zhao, Y.; Zhang, T. S.; Tao, C. B.; Fei, W.; Zhang, S.; Li, M. B. Asymmetric transformation of achiral gold nanoclusters with negative nonlinear dependence between chiroptical activity and enantiomeric excess. Nat. Commun. 2023, 14, 3730.
- 13 Li, S.; Liu, Y.; Tang, X.; Xu, Z.; Lin, L.; Xie, Z.; Huo, R.; Nan, Z. A.; Guan, Z. J.; Shen, H.; Zheng, N. Chiroptical Activity Amplification of Chiral Metal Nanoclusters via Surface/Interface Solidification. ACS Nano 2024, 18, 13675–13682.
- 14 Lu, J.; Shao, B.; Huang, R. W.; Gutierrez-Arzaluz, L.; Chen, S.; Han, Z.; Yin, J.; Zhu, H.; Dayneko, S.; Hedhili, M. N.; Song, X.; Yuan, P.; Dong, C.; Zhou, R.; Saidaminov, M. I.; Zang, S. Q.; Mohammed, O. F.; Bakr, O. M. High-Efficiency Circularly Polarized Light-Emitting Diodes Based on Chiral Metal Nanoclusters. J. Am. Chem. Soc. 2024, 146, 4144–4152.
- 15 Chen, R. Q.; Wang, S. T.; Liu, Y. J.; Zhang, J.; Fang, W. H. Assembly of Homochiral Aluminum Oxo Clusters for Circularly Polarized Luminescence. J. Am. Chem. Soc. 2024, 146, 7524–7532.
- 16 Pei, X. L.; Zhao, P.; Ube, H.; Lei, Z.; Nagata, K.; Ehara, M.; Shionoya, M. Asymmetric Twisting of C-Centered Octahedral Gold(I) Clusters by Chiral N-Heterocyclic Carbene Ligation. J. Am. Chem. Soc. 2022, 144, 2156–2163.
- 17 Zhang, M. M.; Gao, K. K.; Dong, X. Y.; Si, Y.; Jia, T.; Han, Z.; Zang, S. Q.; Mak, T. C. W. Chiral Hydride Cu18 Clusters Transform to Superatomic Cu15Ag4 Clusters: Circularly Polarized Luminescence Lighting. J. Am. Chem. Soc. 2023, 145, 22310–22316.
- 18 Zhang, C.; Si, W. D.; Wang, Z.; Tung, C. H.; Sun, D. Chiral Ligand- Concentration Mediating Asymmetric Transformations of Silver Nanoclusters: NIR-II Circularly Polarized Phosphorescence Lighting. Angew. Chem. Int. Ed. 2024, 63, e202404545.
- 19 Luo, P.; Zhai, X. J.; Bai, S.; Si, Y. B.; Dong, X. Y.; Han, Y. F.; Zang, S. Q. Highly Efficient Circularly Polarized Luminescence from Chiral Au13 Clusters Stabilized by Enantiopure Monodentate NHC Ligands. Angew. Chem. Int. Ed. 2023, 62, e202219017.
- 20 Zhou, B. W.; Zhang, S.; Zhao, L. Progress in optical properties of chiral metal clusters: circular dichroism and circularly polarized luminescence. Mater. Chem. Front. 2023, 7, 6389–6410.
- 21 Zhao, H.; Cui, D.; Kou, J.; Gao, H.; Yu, G.; Sun, C.; Wang, X.; Su, Z. Axially Chiral Dodecanuclear Lanthanide Clusters Constructed by “Bottom-Up” Self-assembly for Enantioselective Sensing. Chin. J. Chem. 2022, 40, 1165–1170.
- 22 Liu, W. D.; Li, G. J.; Xu, H.; Deng, Y. K.; Du, M. H.; Long, L. S.; Zheng, L. S.; Kong, X. J. Circularly polarized luminescence and performance modulation of chiral europium-titanium Eu2Ti4-oxo clusters. Chem. Commun. 2023, 59, 346–349.
- 23 Peng, S.; Ouyang, X.; Wang, Y.; Teng, Q.; Li, Y.; Zhang, X.; Hu, Z.; Wang, K.; Liang, F. In situ synthesized homochiral dysprosium-oxo clusters with threonine Schiff bases. Chinese Chem. Lett. 2023, 34, 108044.
- 24 Wang, X. T.; He, S. R.; Lv, F. W.; Wang, X. T.; Hong, M. X.; Cao, L.; Zhuang, G. L.; Chen, C.; Zheng, J.; Long, L. S.; Zheng, X. Y. Ln3+ Induced Thermally Activated Delayed Fluorescence of Chiral Heterometallic Clusters Ln2Ag28. Angew. Chem. Int. Ed. 2024, e202410414.
- 25 He, W. M.; Zha, J.; Zhou, Z.; Cui, Y. J.; Luo, P.; Ma, L.; Tan, C.; Zang, S. Q. Atomically Precise Chiral Metal Nanoclusters for Circularly Polarized Light Detection. Angew. Chem. Int. Ed. 2024, e202407887.
- 26 Jiang, L.; Jing, M.; Yin, B.; Du, W.; Wang, X.; Liu, Y.; Chen, S.; Zhu, M.; Jiang, L. Bright near-infrared circularly polarized electrochemiluminescence from Au9Ag4 nanoclusters. Chem. Sci. 2023, 14, 7304–7309.
- 27 Li, Y. L.; Wang, H. L.; Zhu, Z. H.; Wang, Y. F.; Liang, F. P.; Zou, H. H. Aggregation induced emission dynamic chiral europium(III) complexes with excellent circularly polarized luminescence and smart sensors. Nat. Commun. 2024, 15, 2896.
- 28 Mobian, P.; Pham, D. J.; Chaumont, A.; Barloy, L.; Khalil, G.; Kyritsakas, N. Circular Heterochiral Titanium-Based Self-Assembled Architectures. J. Am. Chem. Soc. 2024, 146, 14067–14078.
- 29 Han, E. M.; Yu, W. D.; Wang, B.; Yan, J.; Yi, X. Y.; Liu, C. Self-Assembly of Chiral Ferrocene-Functionalized Polyoxotitanium Clusters for Photocatalytic Selective Sulfide Oxidation. Inorg. Chem. 2022, 61, 2903–2910.
- 30 Dong, G. L.; Fang, W. H.; Zhang, L.; Zhang, J. In situ generated pyroglutamate bridged polyoxotitaniums with strong circular dichroism signal. Chinese Chem. Lett. 2019, 30, 1005–1008.
- 31 Gu, Z. G.; Fu, H.; Neumann, T.; Xu, Z. X.; Fu, W. Q.; Wenzel, W.; Zhang, L.; Zhang, J.; Woll, C. Chiral Porous Metacrystals: Employing Liquid- Phase Epitaxy to Assemble Enantiopure Metal-Organic Nanoclusters into Molecular Framework Pores. ACS Nano 2016, 10, 977–83.
- 32 Schetter, B.; Stosiek, C.; Ziemer, B.; Mahrwald, R. Multinuclear enantiopure titanium self-assembly complexes-ynthesis, characterization and application to organic synthesis. Appl. Organomet.Chem. 2007, 21, 139–145.
- 33
Chen, G. H.; He, Y. P.; Yu, Y.; Lv, H.; Li, S.; Wang, F.; Gu, Z. G.; Zhang, J. Post-Assembly Modification of Homochiral Titanium-Organic Cages for Recognition and Separation of Molecular Isomers. Angew. Chem. Int. Ed. 2023, 135, e202300726.
10.1002/ange.202300726 Google Scholar
- 34
Du, M. H.; Xu, S. H.; Li, G. J.; Xu, H.; Lin, Y.; Liu, W. D.; Long, L. S.; Zheng, L. S.; Kong, X. J. Modification of Multi-Component Building Blocks for Assembling Giant Chiral Lanthanide-Titanium Molecular Rings. Angew. Chem. Int. Ed. 2022, 134, e202116296.
10.1002/ange.202116296 Google Scholar
- 35 Coppens, P.; Chen, Y.; Trzop, E. Crystallography and Properties of Polyoxotitanate Nanoclusters. Chem. Rev. 2014, 114, 9645–9661.
- 36 Fang, W. H.; Zhang, L.; Zhang, J. Synthetic strategies, diverse structures and tuneable properties of polyoxo-titanium clusters. Chem. Soc. Rev. 2018, 47, 404–421.
- 37 Zhu, Q. Y.; Dai, J. Titanium oxo/alkoxyl clusters anchored with photoactive ligands. Coord. Chem. Rev. 2021, 430, 213664.
- 38
Gao, M. Y.; Bai, H.; Cui, X.; Liu, S.; Ling, S.; Kong, T.; Bai, B.; Hu, C.; Dai, Y.; Zhao, Y.; Zhang, L.; Zhang, J.; Xiong, Y. Precisely Tailoring Heterometallic Polyoxotitanium Clusters for the Efficient and Selective Photocatalytic Oxidation of Hydrocarbons. Angew. Chem. Int. Ed. 2022, 134, e202215540.
10.1002/ange.202215540 Google Scholar
- 39 Gao, M. Y.; Wang, Z.; Li, Q. H.; Li, D.; Sun, Y.; Andaloussi, Y. H.; Ma, C.; Deng, C.; Zhang, J.; Zhang, L. Black Titanium-Oxo Clusters with Ultralow Band Gaps and Enhanced Nonlinear Optical Performance. J. Am. Chem. Soc. 2022, 144, 8153–8161.
- 40 Wang, C.; Wang, S.; Kong, F.; Chen, N.; Wang, C. Ferrocene-sensitized titanium-oxo clusters with effective visible light absorption and excellent photoelectrochemical activity. Inorg. Chem. Front. 2022, 9, 959–967.
- 41 Zhang, L.; Fan, X.; Yi, X.; Lin, X.; Zhang, J. Coordination-Delayed-Hydrolysis Method for the Synthesis and Structural Modulation of Titanium-Oxo Clusters. Acc. Chem. Res. 2022, 55, 3150–3161.
- 42 Brown, S. E.; Mantaloufa, I.; Andrews, R. T.; Barnes, T. J.; Lees, M. R.; De Proft, F.; Cunha, A. V.; Pike, S. D.; Brown, S. E. Photoactivation of titanium-oxo cluster [Ti6O6(OR)6(O2CtBu)6]: mechanism, photoactivated structures, and onward reactivity with O2 to a peroxide complex. Chem. Sci. 2023, 14, 675–683.
- 43 Liu, J. J.; Sun, S. N.; Liu, J.; Kuang, Y.; Shi, J. W.; Dong, L. Z.; Li, N.; Lu, J. N.; Lin, J. M.; Li, S. L.; Lan, Y. Q. Achieving High-Efficient Photoelectrocatalytic Degradation of 4-Chlorophenol via Functional Reformation of Titanium-Oxo Clusters. J. Am. Chem. Soc. 2023, 145, 6112–6122.
- 44 Xiao, G. B.; Mu, X.; Zhou, S.; Zhu, L.; Peng, Y.; Liang, Q.; Zou, X.; Zhang, J.; Zhang, L.; Cao, J. Directional Transformation of Heterometallic Oxo Clusters: A New Approach to Prepare Wide-Bandgap Cathode Interlayers for Perovskite Solar Cells. Angew. Chem. Int. Ed. 2023, 62, e202218478.
- 45 Hou, J. L.; Huang, N.; Acharya, D.; Liu, Y.; Zhu, J.; Teng, J.; Wang, Z.; Qu, K.; Zhang, X.; Sun, D. All-catecholate-stabilized black titanium- oxo clusters for efficient photothermal conversion. Chem. Sci. 2024, 15, 2655–2664.
- 46 Hou, J. L.; Liu, Y.; Huang, N.; Azam, M.; Huang, C.; Wang, Z.; Huang, X.; Qu, K.; Sun, D. Calix[6]arene-functionalized titanium-oxo clusters for photocatalytic cycloaddition of carbon dioxide to epoxides. Inorg. Chem. Front. 2024, 11, 3755–3764.
- 47 Chen, X.; Liu, Q.; Yu, W.; Yan, J.; Liu, C. Advancements in Calixarene- Protected Titanium-Oxo Clusters: From Structural Assembly to Catalytic Functionality. Chem. Commun. 2024, 60, 11890–11898.
- 48 Si, W. D.; Sheng, K.; Zhang, C.; Wang, Z.; Zhang, S. S.; Dou, J. M.; Feng, L.; Gao, Z. Y.; Tung, C. H.; Sun, D. Bicarbonate insertion triggered self-assembly of chiral octa-gold nanoclusters into helical superstructures in the crystalline state. Chem. Sci. 2022, 13, 10523–10531.
- 49 Zhang, M. M.; Dong, X. Y.; Wang, Z. Y.; Li, H. Y.; Li, S. J.; Zhao, X.; Zang, S. Q. AIE Triggers the Circularly Polarized Luminescence of Atomically Precise Enantiomeric Copper(I) Alkynyl Clusters. Angew. Chem. Int. Ed. 2020, 59, 10052–10058.
- 50 Kong, Y. J.; Yan, Z. P.; Li, S.; Su, H. F.; Li, K.; Zheng, Y. X.; Zang, S. Q. Photoresponsive Propeller-like Chiral AIE Copper(I) Clusters. Angew. Chem. Int. Ed. 2020, 59, 5336–5340.
- 51 Chen, X. M.; Tong, M. L. Solvothermal in situ metal/ligand reactions: a new bridge between coordination chemistry and organic synthetic chemistry. Acc. Chem. Res. 2007, 40, 162–170.
- 52 Liu, Y. N.; Hou, J. L.; Wang, Z.; Gupta, R. K.; Jaglicic, Z.; Jagodic, M.; Wang, W. G.; Tung, C. H.; Sun, D. An Octanuclear Cobalt Cluster Protected by Macrocyclic Ligand: In Situ Ligand-Transformation-Assisted Assembly and Single-Molecule Magnet Behavior. Inorg. Chem. 2020, 59, 5683–5693.
- 53 Yuan, Z. R.; Wang, Z.; Han, B. L.; Zhang, C. K.; Zhang, S. S.; Zhu, Z. Y.; Yu, J. H.; Li, T. D.; Li, Y. Z.; Tung, C. H.; Sun, D. Ag22 Nanoclusters with Thermally Activated Delayed Fluorescence Protected by Ag/Cyanurate/Phosphine Metallamacrocyclic Monolayers through In-Situ Ligand Transesterification. Angew. Chem. Int. Ed. 2022, 61, e202211628.
- 54 Shi, L. P.; Li, W. L.; Wang, P. Y.; Wu, X. M.; Yao, Z. Q.; Zhao, J. P.; Liu, F. C. An unprecedented {Y2⊂Y10} type disk-like Y12 nanocluster featuring electroluminescence property in OLED device. Inorg. Chem. Front. 2024, 11, 3309–3315.
- 55 Yang, J. F.; Ma, Y. Y.; Xie, N.; Tang, Y. T.; Du, J.; Yin, X. R.; Lin, Z. G.; Han, Z. G. In Situ Ligand-Transformation-Assisted Assembly of a Polyoxometalate and Silver-Phosphine Oxide Cluster for Colorimetric Detection of Phenol Contaminants. Inorg. Chem. 2024, 63, 18200–18210.
- 56 Zou, X.; Kang, X.; Zhu, M.; Zou, X. Recent developments in the investigation of driving forces for transforming coinage metal nanoclusters. Chem. Soc. Rev. 2023, 52, 5892–5967.
- 57 Tang, Q.; Hu, G.; Fung, V.; Jiang, D.-e. Insights into Interfaces, Stability, Electronic Properties, and Catalytic Activities of Atomically Precise Metal Nanoclusters from First Principles. Acc. Chem. Res. 2018, 51, 2793–2802.
- 58 Chaki, N. K.; Mandal, S.; Reber, A. C.; Qian, M.; Saavedra, H. M.; Weiss, P. S.; Khanna, S. N.; Sen, A. Controlling Band Gap Energies in Cluster-Assembled Ionic Solids through Internal Electric Fields. ACS Nano 2010, 4, 5813–5818.
- 59 Huang, X. Q.; Liu, S.; Zhou, Z.; Zhang, H.; Gao, Z.; Shen, G.; Wang, H.; Wang, Z.; Yao, Q.; Sun, D. The tail of imidazole regulated the assembly of two robust sandwich-type polyoxotungstate-based open frameworks with efficient visible-white-light-driven catalytic oxidation of sulfides. Inorg. Chem. Front. 2023, 10, 1465–1474.