An Intelligent Triple Assisted Gold Cluster-Based Nanosystem for Enhanced Tumor Photodynamic Therapy
Fangli Gao
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007 China
These authors contributed equally.
Search for more papers by this authorYanru Liu
Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007 China
These authors contributed equally.
Search for more papers by this authorLiang Zhu
Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007 China
Search for more papers by this authorCorresponding Author
Jie Zhang
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorYi Chang
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007 China
Search for more papers by this authorWeihua Gao
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007 China
Search for more papers by this authorGuanglei Ma
Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007 China
Search for more papers by this authorCorresponding Author
Xiaoming Ma
Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Yuming Guo
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007 China
Henan International Joint Laboratory of Smart Molecules and Identification and Diagnostic Functions, Henan Normal University, Xinxiang, Henan, 453007 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorFangli Gao
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007 China
These authors contributed equally.
Search for more papers by this authorYanru Liu
Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007 China
These authors contributed equally.
Search for more papers by this authorLiang Zhu
Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007 China
Search for more papers by this authorCorresponding Author
Jie Zhang
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorYi Chang
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007 China
Search for more papers by this authorWeihua Gao
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007 China
Search for more papers by this authorGuanglei Ma
Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007 China
Search for more papers by this authorCorresponding Author
Xiaoming Ma
Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Yuming Guo
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007 China
Henan International Joint Laboratory of Smart Molecules and Identification and Diagnostic Functions, Henan Normal University, Xinxiang, Henan, 453007 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorComprehensive Summary
Photodynamic therapy (PDT) has been attracted a surge of research interest. However, there are several obstacles to limit the efficacy of PDT, such as hypoxic tumor microenvironment (TME), overexpressed glutathione (GSH), inefficient reactive oxygen species (ROS) generation, and so on. Herein, a smart responsive nanosystem was constructed, which was composed of Au25 modified with triphenylphosphine (Au25-TPP), catalase (CAT) and GSH-responsive diselenide-bridged mesoporous silica nanoparticles (Se-MSN). When the nanosystem arrived at tumor site, Se-MSN was degraded by the intracellular overexpressed GSH to release Au25-TPP and CAT. The Au25-TPP was targeted to mitochondria and generated ROS under the 808 nm NIR laser irradiation to kill tumor cells. Simultaneously, CAT could catalyze hydrogen peroxide to provide oxygen for relieving the hypoxia of TME. Besides, GSH was consumed by the diselenide bond to diminish the ROS loss. The above tactics (mitochondria targeting, hypoxia relieving and GSH consuming) jointly enhanced the PDT efficacy. The nanosystem showed distinct in vitro anticancer effect significantly stronger than other groups containing one or two assistance. Moreover, the in vivo results suggested that the tumors could be restrained obviously. The current study provides a new inspiration for constructing novel inorganic nanomedicines with multiple enhancement effect of PDT efficacy.
Supporting Information
Filename | Description |
---|---|
cjoc202400837-sup-0001-supinfo.pdfPDF document, 1.3 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Tam, L. B.; Chu, J. C. H.; He, L.; Yang, C.; Han, K. C.; Cheung, P. C. K.; Ng, D. K. P.; Lo, P. C. Enzyme-Responsive Double-Locked Photodynamic Molecular Beacon for Targeted Photodynamic Anticancer Therapy. J. Am. Chem. Soc. 2023, 145, 7361–7375.
- 2 Overchuk, M.; Weersink, R. A.; Wilson, B. C.; Zheng, G. Photodynamic and Photothermal Therapies: Synergy Opportunities for Nanomedicine. ACS Nano 2023, 17, 7979–8003.
- 3
Li, S.; Yang, F.; Wang, Y.; Du, T.; Hou, X. Emerging Nanotherapeutics for Facilitating Photodynamic Therapy. Chem. Eng. J. 2022, 451, 138621.
10.1016/j.cej.2022.138621 Google Scholar
- 4
Huang, W.; Zhang, L.; Sun, J.; Sun, Y.; Gong, L.; Ge, S.; Zheng, Y.; Gao, W.; Wei, X. Hypoxia Reversion by Low-Immunogenic Ultra-Acid-Sensitive Comicelles of Protein-Polymer Conjugates Sensitizes Tumors to Photodynamic Therapy. J. Am. Chem. Soc. 2024, doi: https://doi.org/10.1021/jacs.3c13501..
10.1021/jacs.3c13501 Google Scholar
- 5 Tian, J.; Li, B.; Zhang, F.; Yao, Z.; Song, W.; Tang, Y.; Ping, Y.; Liu, B. Activatable Type I Photosensitizer with Quenched Photosensitization Pre and Post Photodynamic Therapy. Angew. Chem. Int. Ed. 2023, 62, e202307288.
- 6 Wan, Y.; Fu, L. H.; Li, C.; Lin, J.; Huang, P. Conquering the Hypoxia Limitation for Photodynamic Therapy. Adv. Mater. 2021, 33, e2103978.
- 7 Sun, X.; Ni, N.; Ma, Y.; Wang, Y.; Leong, D. T. Retooling Cancer Nanotherapeutics' Entry into Tumors to Alleviate Tumoral Hypoxia. Small 2020, 16, e2003000.
- 8 Shen, J.; Chen, G.; Zhao, L.; Huang, G.; Liu, H.; Liu, B.; Miao, Y.; Li, Y. Recent Advances in Nanoplatform Construction Strategy for Alleviating Tumor Hypoxia. Adv. Healthcare Mater. 2023, 12, e2300089.
- 9 Wu, J.; Yi, S.; Cao, Y.; Zu, M.; Li, B.; Yang, W.; Shahbazi, M. A.; Wan, Y.; Reis, R. L.; Kundu, S. C.; Shi, X.; Xiao, B. Dual-driven Nanomotors Enable Tumor Penetration and Hypoxia Alleviation for Calcium Overload-Photo-Immunotherapy Against Colorectal Cancer. Biomaterials 2023, 302, 122332.
- 10 Yu, Q.; Huang, T.; Liu, C.; Zhao, M.; Xie, M.; Li, G.; Liu, S.; Huang, W.; Zhao, Q. Oxygen Self-Sufficient NIR-Activatable Liposomes for Tumor Hypoxia Regulation and Photodynamic Therapy. Chem. Sci. 2019, 10, 9091–9098.
- 11 Yuan, C. S.; Teng, Z.; Yang, S.; He, Z.; Meng, L. Y.; Chen, X. G.; Liu, Y. Reshaping Hypoxia and Silencing CD73 via Biomimetic Gelatin Nanotherapeutics to Boost Immunotherapy. J. Control. Release 2022, 351, 255–271.
- 12
Tian, W.; Wang, S.; Tian, Y.; Su, X.; Sun, H.; Tang, Y.; Lu, G.; Liu, S.; Shi, H. Periodic Mesoporous Organosilica Coupled with Chlorin e6 and Catalase for Enhanced Photodynamic Therapy to Treat Triple-Negative Breast Cancer. J. Colloid Intrrface Sci. 2022, 15, 634–642.
10.1016/j.jcis.2021.11.107 Google Scholar
- 13 Liang, S.; Sun, C.; Yang, P.; Ma, P.; Huang, S.; Cheng, Z.; Yu, X.; Lin, J. Core-Shell Structured Upconversion Nanocrystal-Dendrimer Composite as a Carrier for Mitochondria Targeting and Catalase Enhanced Anti-cancer Photodynamic Therapy. Biomaterials 2020, 240, 119850.
- 14 Phua, S. Z. F.; Yang, G.; Lim, W. Q.; Verma, A.; Zhao, Y. Catalase Integrated Hyaluronic Acid as Nanocarriers for Enhanced Photodynamic Therapy in Solid Tumor. ACS Nano 2019, 13, 4742–4751.
- 15 Wang, D.; Wu, H.; Yang, G.; Qian, C.; Gu, L.; Wang, H.; Zhou, W.; Liu, J.; Wu, Y.; Zhang, X.; Guo, Z.; Chen, H.; Jana, D.; Zhao, Y. Metal-Organic Framework Derived Multicomponent Nanoagent as a Reactive Oxygen Species Amplifier for Enhanced Photodynamic Therapy. ACS Nano 2020, 14, 13500–13511.
- 16 Sheng, S.; Lin, L.; Liu, F.; Zhang, Y.; Xu, C.; Hao, K.; Wang, D.; Tian, H.; Chen, X. Endogenous Biocatalytic Reaction-Based Nanoplatform for Multifunctional Tumor Theranostics. Chem. Mater. 2022, 34, 8664–8674.
- 17 Zhong, X.; Wang, X.; Cheng, L.; Tang, Y. A.; Yang, X. GSH-Depleted PtCu3 Nanocages for ChemodynamicEnhanced Sonodynamic Cancer Therapy. Adv. Funct. Mater. 2019, 30, 1907954.
- 18 Yang, Y.; Wang, P.; Shi, R.; Zhao, Z.; Xie, A.; Shen, Y.; Zhu, M. Design of the Tumor Microenvironment-Multiresponsive Nanoplatform for Dual-Targeting and Photothermal Imaging Guided Photothermal/ Photodynamic/Chemodynamic Cancer Therapies with Hypoxia Improvement and GSH Depletion. Chem. Eng. J. 2022, 441, 136042.
- 19
Lan, J. S.; Liu, L.; Zeng, R. F.; Qin, Y. H.; Zhang, T. Tumor-Specific Carrier-Free Nanodrugs with GSH Depletion and Enhanced ROS Generation for Endogenous Synergistic Anti-tumor by a Chemotherapy- Photodynamic Therapy. Chem. Eng. J. 2020, 407, 127212.
10.1016/j.cej.2020.127212 Google Scholar
- 20 Manzano, M.; Vallet-Regí, M. Mesoporous Silica Nanoparticles for Drug Delivery. Adv. Funct. Mater. 2020, 30, 1902634.
- 21 Xu, B.; Li, S.; Shi, R.; Liu, H. Multifunctional Mesoporous Silica Nanoparticles for Biomedical Applications. Signal Transduct. Target. Ther. 2023, 8, 435.
- 22 Lerida-Viso, A.; Estepa-Fernandez, A.; Garcia-Fernandez, A.; Marti-Centelles, V.; Martinez-Manez, R. Biosafety of Mesoporous Silica Nanoparticles; Towards Clinical Translation. Adv. Drug Delivery Rev. 2023, 201, 115049.
- 23 Pierre, P.; Stefano, V.; Maria, S. A.; Marianna, R.; Dore, M. D.; Tuan, T.; Frank, B.; Martina, N.; Alessandro, B.; Alessandro, P. Supramolecular Nucleic Acid-Based Organosilica Nanoparticles Responsive to Physical and Biological Inputs. J. Am. Chem. Soc. 2023, 145, 22903–22912.
- 24 Cheng, Y.; Jiao, X.; Fan, W.; Yang, Z.; Wen, Y.; Chen, X. Controllable Synthesis of Versatile Mesoporous Organosilica Nanoparticles as Precision Cancer Theranostics. Biomaterials 2020, 256, 120191.
- 25
Shao, D.; Li, M.; Wang, Z.; Zheng, X.; Lao, Y. H.; Chang, Z.; Zhang, F.; Lu, M.; Yue, J.; Hu, H. Bioinspired Diselenid-Bridged Mesoporous Silica Nanoparticles for Dual-Responsive Protein Delivery. Adv. Mater. 2018, 30, 1801198.
10.1002/adma.201801198 Google Scholar
- 26 He, L.; Habibovic, P.; van Rijt, S. Selenium-Incorporated Mesoporous Silica Nanoparticles for Osteosarcoma Therapy. Biomater. Sci. 2023, 11, 3828–3839.
- 27 Zhang, F.; Chen, F.; Yang, C.; Wang, L.; Hu, H.; Li, X.; Zheng, X.; Wang, Z.; Chang, Z.; Li, T.; Li, L.; Ge, M.; Du, J.; Sun, W.; Dong, WF. Shao D. Coordination and Redox Dual-Responsive Mesoporous Organosilica Nanoparticles Amplify Immunogenic Cell Death for Cancer Chemoimmunotherapy. Small 2021, 17, e2100006.
- 28 Ke, L.; Wei, F.; Xie, L.; Karges, J.; Chen, Y.; Ji, L.; Chao, H. A Biodegradable Iridium(III) Coordination Polymer for Enhanced Two-Photon Photodynamic Therapy Using an Apoptosis-Ferroptosis Hybrid Pathway. Angew. Chem. Int. Ed. 2022, 61, e202205429.
- 29 Bhattacharya, S. R.; Bhattacharya, K.; Xavier, V. J.; Ziarati, A.; Picard, D.; Thomas, B. The Atomically Precise Gold/Captopril Nanocluster Au. ACS Appl. Mater. Interfaces 2022, 14, 29521–29536.
- 30 Gao, G.; Chen, R.; He, M.; Li, J.; Li, J.; Wang, L.; Sun, T. Gold Nanoclusters for Parkinson's Disease Treatment. Biomaterials 2019, 194, 36–46.
- 31 Hao, D.; Zhang, X.; Su, R.; Wang, Y.; Qi, W. Biomolecule-Protected Gold Nanoclusters: Synthesis and Biomedical Applications. J. Mater. Chem. B 2023, 11, 5051–5070.
- 32 Zhu, H.; Wang, S.; Wang, Y.; Song, C.; Yao, Q.; Yuan, X.; Xie, J. Gold Nanocluster with AIE: A Novel Photodynamic Antibacterial and Deodorant Molecule. Biomaterials 2022, 288, 121695.
- 33 Geng, T.; Zhao, L.; Wu, D.; Zhang, H.; Zhao, X.; Jiao, M.; Zeng, L. Bovine Serum Albumin-Encapsulated Ultrasmall Gold Nanoclusters for Photodynamic Therapy of Tumors. ACS Appl. Nano Mater. 2021, 4, 13818–13825.
- 34 Cheng, D.; Liu, R.; Tian, L.; Zhou, Q.; Niu, F.; Yue, Y.; Hu, K. Photocatalytic Nitroaromatic Prodrug Activation by Functionalized Gold Nanoclusters. ACS Appl. Nano Mater. 2021, 4, 13413–13424.
- 35 Yang, Y.; Wang, S.; Chen, S.; Shen, Y.; Zhu, M. Switching the Subcellular Organelle Targeting of Atomically Precise Gold Nanoclusters by Modifying the Capping Ligand. Chem. Commun. 2018, 54, 9222–9225.
- 36 Bai, Y.; Hua, J.; Zhao, J.; Wang, S.; Huang, M.; Wang, Y.; Luo, Y.; Zhao, S.; Liang, H. A Silver-Induced Absorption Red-Shifted Dual-Targeted Nanodiagnosis-Treatment Agent for NIR-II Photoacoustic Imaging- Guided Photothermal and ROS Simultaneously Enhanced Immune Checkpoint Blockade Antitumor Therapy. Adv. Sci. 2024, 11, e2306375.
- 37 Yin, B.; Ho, W. K. H.; Xia, X.; Chan, C. K. W.; Zhang, Q.; Ng, Y. M.; Lam, C. Y. K.; Cheung, J. C. W.; Wang, J.; Yang, M.; Wong, S. H. D. A Multilayered Mesoporous Gold Nanoarchitecture for Ultraeffective Near- Infrared Light-Controlled Chemo/Photothermal Therapy for Cancer Guided by SERS Imaging. Small 2023, 19, e2206762.
- 38
Deng, C.; Zhang, Q.; Jia, M.; Zhao, J.; Sun, X.; Gong, T.; Zhang, Z. Tumors and Their Microenvironment Dual-Targeting Chemotherapy with Local Immune Adjuvant Therapy for Effective Antitumor Immunity against Breast Cancer. Adv. Sci. 2019, 6, 1801868.
10.1002/advs.201801868 Google Scholar
- 39 Marulanda, K.; Mercel, D.C.; Sun, K.; Gambarian, M.; Roark, J.; Weiss, J.; Tsihlis, N. D.; Karver, M. R.; Centeno, S. R.; Peters, E. B.; Clemons, T. D.; Stupp, S. I.; McLean, S. E.; Kibbe, M. R. Intravenous Delivery of Lung-Targeted Nanofibers for Pulmonary Hypertension in Mice. Adv. Healthcare Mater. 2021, 10, e2100302.
- 40 Ma, Z.; Zeng, P.; Zhai, T.; Zhao, Y.; Liang, H. In Situ Mitochondrial Biomineralization for Drug-Free Cancer Therapy. Adv. Mater. 2024, 36, e2310218.
- 41 Xu, Y.; Lv, J.; Liu, F.; Wang, J.; Liu, Y.; Kong, C.; Li, Y.; Shen, N.; Gu, Z.; Tang, Z.; Chen, X. Tumor Microenvironment Remodeling-Mediated Sequential Drug Delivery Potentiates Treatment Efficacy. Adv. Mater. 2024, 36, e2312493.
- 42 Hua, Y.; Shao, Z. H.; Zhai, A.; Zhang, L. J.; Wang, Z. Y.; Zhao, G.; Xie, F.; Liu, J. Q.; Zhao, X.; Chen, X. Water-Soluble Au25 Clusters with Single-Crystal Structure for Mitochondria-Targeting Radioimmunotherapy. ACS Nano 2023, 17, 7837–7846.
- 43 Liu, J.; Kang, D. W.; Fan, Y.; Nash, G. T.; Jiang, X.; Weichselbaum, R. R.; Lin, W. Nanoscale Covalent Organic Framework with Staggered Stacking of Phthalocyanines for Mitochondria-Targeted Photodynamic Therapy. J. Am. Chem. Soc. 2024, 146, 849–857.
- 44 Ma, D.; Zong, Q.; Du, Y.; Yu, F.; Xiao, X.; Sun, R.; Guo, Y.; Wei, X.; Yuan, Y. Sequential Enzyme-activated Macrotheranostic Probe for Selective Tumor Mitochondria Targeting. Acta Biomater. 2021, 135, 628–637.
- 45 Yuan, P.; Deng, F. A.; Liu, Y. B.; Zheng, R. R.; Rao, X. N.; Qiu, X. Z.; Zhang, D. W.; Yu, X. Y.; Cheng, H.; Li, S. Y. Mitochondria Targeted O(2) Economizer to Alleviate Tumor Hypoxia for Enhanced Photodynamic Therapy. Adv. Healthcare Mater. 2021, 10, e2100198.
- 46 Bai, X.; Lin, Y.; Gong, L.; Duan, J.; Sun, X.; Wang, C.; Liu, Z.; Jiang, J.; Zhou, X.; Zhou, M.; Zhang, Z.; Liu, Z.; Jing, P.; Zhong, Z. Nanoparticles that Target the Mitochondria of Tumor Cells to Restore Oxygen Supply for Photodynamic Therapy: Design and Preclinical Validation Against Breast Cancer. J. Control. Release 2023, 362, 356–370.
- 47
Shao, D.; Li, M.; Wang, Z.; Zheng, X.; Lao, Y. H.; Chang, Z.; Zhang, F.; Lu, M.; Yue, J.; Hu, H.; Yan, H.; Chen, L.;, Dong, W. F.; Leong, K. W. Protein Delivery: Bioinspired Diselenide-Bridged Mesoporous Silica Nanoparticles for Dual-Responsive Protein Delivery. Adv. Mater. 2018, 30, e1801198.
10.1002/adma.201801198 Google Scholar
- 48 Kumar, S.; Jin, R. Water-soluble Au25(Capt)18 Nanoclusters: Synthesis, Thermal Stability, and Optical Properties. Nanoscale 2012, 4, 4222–4227.
- 49 Yang, Y.; Wang, S.; Chen, S.; Shen, Y.; Zhu, M. Switching the Subcellular Organelle Targeting of Atomically Precise Gold Nanoclusters by Modifying the Capping Ligand. Chem. Commun. 2018, 54, 9222.
- 50 Li, L.; Sun, W.; Li, L.; Liu, Y.; Huang, Y. pH-Responsive Sequential- disassembly Nanohybrid For Mitochondrial Targeting. Nanoscale 2016, 9, 314–325.