A Cascade Reaction Triggered by H-H Steric Hindrance: Dimeric Covalent Organic Frameworks on Au(111) and Dimeric Nanoribbons on Ag(111)
Boyu Fu
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming, Yunnan, 650093 China
These authors made equal contribution.
Search for more papers by this authorCorresponding Author
Jianchen Lu
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming, Yunnan, 650093 China
These authors made equal contribution.
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorJianqun Geng
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming, Yunnan, 650093 China
These authors made equal contribution.
Search for more papers by this authorYong Zhang
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming, Yunnan, 650093 China
Search for more papers by this authorWei Xiong
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming, Yunnan, 650093 China
Search for more papers by this authorGefei Niu
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming, Yunnan, 650093 China
Search for more papers by this authorYi Zhang
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming, Yunnan, 650093 China
Search for more papers by this authorCorresponding Author
Lei Gao
Faculty of Science, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming, Yunnan, 650500 China
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorCorresponding Author
Jinming Cai
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming, Yunnan, 650093 China
Southwest United Graduate School, Kunming, Yunnan, 650093 China
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorBoyu Fu
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming, Yunnan, 650093 China
These authors made equal contribution.
Search for more papers by this authorCorresponding Author
Jianchen Lu
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming, Yunnan, 650093 China
These authors made equal contribution.
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorJianqun Geng
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming, Yunnan, 650093 China
These authors made equal contribution.
Search for more papers by this authorYong Zhang
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming, Yunnan, 650093 China
Search for more papers by this authorWei Xiong
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming, Yunnan, 650093 China
Search for more papers by this authorGefei Niu
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming, Yunnan, 650093 China
Search for more papers by this authorYi Zhang
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming, Yunnan, 650093 China
Search for more papers by this authorCorresponding Author
Lei Gao
Faculty of Science, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming, Yunnan, 650500 China
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorCorresponding Author
Jinming Cai
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming, Yunnan, 650093 China
Southwest United Graduate School, Kunming, Yunnan, 650093 China
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorComprehensive Summary
In on-surface synthesis, dimers are typically utilized to explore reaction mechanisms or as intermediates in the formation of final products. However, constructing the innovative nanostructures with dimers as building blocks remains challenging. Here, using non-planar 2,2′,7,7′-tetrabromo-9,9′-biflurenyliden molecules, we have successfully synthesized dimeric covalent organic frameworks (COFs) on the Au(111) surface through a temperature-controlled cascade reaction. Notably, the H-H steric hindrance within precursors caused by double bonds leads to selective stepwise debromination during the thermal annealing, which promotes the dimerization through intermolecular Ullmann coupling and cyclodehydrogenation reaction to form COFs primarily constituted by dimer building blocks. Combining scanning tunneling microscopy/spectroscopy and density functional theory calculations, we have precisely confirmed the structural evolution and reaction mechanism. Furthermore, by introducing Ag adatoms to form C−Ag−C intermediates, we have successfully regulated the reaction path and synthesized one-dimensional nanoribbons with dimers as building blocks. This work not only validates the strategy of synthesizing dimeric nanostructures on different surfaces through cascade reactions induced by precursor design, but also enriches the research field of surface synthesis of COFs and nanoribbons.
Supporting Information
Filename | Description |
---|---|
cjoc202400788-sup-0001-supinfo.pdfPDF document, 1.8 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
Fel'dblyum, V. S.; Obeshchalova, N. V. Dimerisation of Alkenes. Russ. Chem. Rev. 1968, 37, 789.
10.1070/RC1968v037n10ABEH001704 Google Scholar
- 2 McGuinness, D. S. Olefin Oligomerization via Metallacycles: Dimerization, Trimerization, Tetramerization, and Beyond. Chem. Rev. 2011, 111, 2321–2341.
- 3 Li, X.; Xu, Z.; Bu, D.; Cai, J.; Chen, H.; Chen, Q.; Chen, T.; Cheng, F.; Chi, L.; Dong, W.; Dong, Z.; Du, S.; Fan, Q.; Fan, X.; Fu, Q.; Gao, S.; Guo, J.; Guo, W.; He, Y.; Hou, S.; Jiang, Y.; Kong, H.; Li, B.; Li, D.; Li, J.; Li, Q.; Li, R.; Li, S.; Lin, Y.; Liu, M.; Liu, P.; Liu, Y.; Lü, J.; Ma, C.; Pan, H.; Pan, J.; Pan, M.; Qiu, X.; Shen, Z.; Tan, S.; Wang, B.; Wang, D.; Wang, L.; Wang, L.; Wang, T.; Wang, X.; Wang, X.; Wang, X.; Wang, Y.; Wang, Y.; Wu, K.; Xu, W.; Xue, N.; Yan, L.; Yang, F.; Yang, Z.; Zhang, C.; Zhang, X.; Zhang, Y.; Zhang, Y.; Zhou, X.; Zhu, J.; Zhang, Y.; Gao, F.; Wang, Y. Recent progress on surface chemistry I: Assembly and reaction. Chin. Chem. Lett. 2024, 35, 110055.
- 4 Li, X.; Xu, Z.; Bu, D.; Cai, J.; Chen, H.; Chen, Q.; Chen, T.; Cheng, F.; Chi, L.; Dong, W.; Dong, Z.; Du, S.; Fan, Q.; Fan, X.; Fu, Q.; Gao, S.; Guo, J.; Guo, W.; He, Y.; Hou, S.; Jiang, Y.; Kong, H.; Li, B.; Li, D.; Li, J.; Li, Q.; Li, R.; Li, S.; Lin, Y.; Liu, M.; Liu, P.; Liu, Y.; Lü, J.; Ma, C.; Pan, H.; Pan, J.; Pan, M.; Qiu, X.; Shen, Z.; Tan, S.; Wang, B.; Wang, D.; Wang, L.; Wang, L.; Wang, T.; Wang, X.; Wang, X.; Wang, X.; Wang, Y.; Wang, Y.; Wu, K.; Xu, W.; Xue, N.; Yan, L.; Yang, F.; Yang, Z.; Zhang, C.; Zhang, X.; Zhang, Y.; Zhang, Y.; Zhou, X.; Zhu, J.; Zhang, Y.; Gao, F.; Wang, Y. Recent progress on surface chemistry II: Property and characterization. Chin. Chem. Lett. 2024, 110100.
- 5 Klaasen, H.; Liu, L.; Meng, X.; Held, P. A.; Gao, H.-Y.; Barton, D.; Mück-Lichtenfeld, C.; Neugebauer, J.; Fuchs, H.; Studer, A. Reaction Selectivity in On-Surface Chemistry by Surface Coverage Control–Alkyne Dimerization versus Alkyne Trimerization. Chem. Eur. J. 2018, 24, 15303–15308.
- 6 Gao, H.-Y.; Wagner, H.; Zhong, D.; Franke, J.-H.; Studer, A.; Fuchs, H. Glaser Coupling at Metal Surfaces. Angew. Chem. Int. Ed. 2013, 52, 4024–4028.
- 7 Yang, B.; Björk, J.; Lin, H.; Zhang, X.; Zhang, H.; Li, Y.; Fan, J.; Li, Q.; Chi, L. Synthesis of Surface Covalent Organic Frameworks via Dimerization and Cyclotrimerization of Acetyls. J. Am. Chem. Soc. 2015, 137, 4904–4907.
- 8 Sánchez-Sánchez, C.; Dienel, T.; Nicolaï, A.; Kharche, N.; Liang, L.; Daniels, C.; Meunier, V.; Liu, J.; Feng, X.; Müllen, K.; Sánchez-Valencia, J. R.; Gröning, O.; Ruffieux, P.; Fasel, R. On-Surface Synthesis and Characterization of Acene-Based Nanoribbons Incorporating Four- Membered Rings. Chem. Eur. J. 2019, 25, 12074–12082.
- 9 Sánchez-Sánchez, C.; Nicolaï, A.; Rossel, F.; Cai, J.; Liu, J.; Feng, X.; Müllen, K.; Ruffieux, P.; Fasel, R.; Meunier, V. On-Surface Cyclization of ortho-Dihalotetracenes to Four- and Six-Membered Rings. J. Am. Chem. Soc. 2017, 139, 17617–17623.
- 10 Kinikar, A.; Di Giovannantonio, M.; Urgel, J. I.; Eimre, K.; Qiu, Z.; Gu, Y.; Jin, E.; Narita, A.; Wang, X.-Y.; Müllen, K.; Ruffieux, P.; Pignedoli, C. A.; Fasel, R. On-surface polyarylene synthesis by cycloaromatization of isopropyl substituents. Nat. Synth. 2022, 1, 289–296.
- 11 Kalashnyk, N.; Mouhat, K.; Oh, J.; Jung, J.; Xie, Y.; Salomon, E.; Angot, T.; Dumur, F.; Gigmes, D.; Clair, S. On-surface synthesis of aligned functional nanoribbons monitored by scanning tunnelling microscopy and vibrational spectroscopy. Nat. Commun. 2017, 8, 14735.
- 12 Cao, N.; Yang, B.; Riss, A.; Rosen, J.; Björk, J.; Barth, J. V. On-surface synthesis of enetriynes. Nat. Commun. 2023, 14, 1255.
- 13 Li, X.; Han, D.; Qin, T.; Xiong, J.; Huang, J.; Wang, T.; Ding, H.; Hu, J.; Xu, Q.; Zhu, J. Selective synthesis of Kagome nanoporous graphene on Ag(111) via an organometallic template. Nanoscale 2022, 14, 6239–6247.
- 14 Wang, D.; Lu, X.; Arramel; Yang, M.; Wu, J.; Wee, A. T. S. On-Surface Synthesis of Variable Bandgap Nanoporous Graphene. Small 2021, 17, 2102246.
- 15 Galeotti, G.; De Marchi, F.; Hamzehpoor, E.; MacLean, O.; Rajeswara Rao, M.; Chen, Y.; Besteiro, L. V.; Dettmann, D.; Ferrari, L.; Frezza, F.; Sheverdyaeva, P. M.; Liu, R.; Kundu, A. K.; Moras, P.; Ebrahimi, M.; Gallagher, M. C.; Rosei, F.; Perepichka, D. F.; Contini, G. Synthesis of mesoscale ordered two-dimensional π-conjugated polymers with semiconducting properties. Nat. Mater. 2020, 19, 874–880.
- 16 Qin, T.; Guo, D.; Xiong, J.; Li, X.; Hu, L.; Yang, W.; Chen, Z.; Wu, Y.; Ding, H.; Hu, J.; Xu, Q.; Wang, T.; Zhu, J. Synthesis of a Porous [14]Annulene Graphene Nanoribbon and a Porous [30]Annulene Graphene Nanosheet on Metal Surfaces. Angew. Chem. Int. Ed. 2023, 62, e202306368.
- 17 Pawlak, R.; Liu, X.; Ninova, S.; D’Astolfo, P.; Drechsel, C.; Sangtarash, S.; Häner, R.; Decurtins, S.; Sadeghi, H.; Lambert, C. J.; Aschauer, U.; Liu, S.-X.; Meyer, E. Bottom-up Synthesis of Nitrogen-Doped Porous Graphene Nanoribbons. J. Am. Chem. Soc. 2020, 142, 12568–12573.
- 18 Yin, R.; Wang, J.; Qiu, Z.-L.; Meng, J.; Xu, H.; Wang, Z.; Liang, Y.; Zhao, X.-J.; Ma, C.; Tan, Y.-Z.; Li, Q.; Wang, B. Step-Assisted On-Surface Synthesis of Graphene Nanoribbons Embedded with Periodic Divacancies. J. Am. Chem. Soc. 2022, 144, 14798–14808.
- 19 Faury, T.; Clair, S.; Abel, M.; Dumur, F.; Gigmes, D.; Porte, L. Sequential Linking To Control Growth of a Surface Covalent Organic Framework. J. Phys. Chem. C 2012, 116, 4819–4823.
- 20 Schlögl, S.; Sirtl, T.; Eichhorn, J.; Heckl, W. M.; Lackinger, M. Synthesis of two-dimensional phenylene–boroxine networks through in vacuo condensation and on-surface radical addition. Chem. Commun. 2011, 47, 12355–12357.
- 21 Kong, H.; Yang, S.; Gao, H.; Timmer, A.; Hill, J. P.; Díaz Arado, O.; Mönig, H.; Huang, X.; Tang, Q.; Ji, Q.; Liu, W.; Fuchs, H. Substrate- Mediated C–C and C–H Coupling after Dehalogenation. J. Am. Chem. Soc. 2017, 139, 3669–3675.
- 22 Di Giovannantonio, M.; Deniz, O.; Urgel, J. I.; Widmer, R.; Dienel, T.; Stolz, S.; Sánchez-Sánchez, C. M.; Muntwiler, M.; Dumslaff, T.; Berger, R.; Narita, A.; Feng, X.; Müllen, K.; Ruffieux, P.; Fasel, R. On-Surface Growth Dynamics of Graphene Nanoribbons: The Role of Halogen Functionalization. ACS Nano 2017, 12, 74–81.
- 23 Galeotti, G.; Di Giovannantonio, M.; Lipton-Duffin, J.; Ebrahimi, M.; Tebi, S.; Verdini, A.; Floreano, L.; Fagot-Revurat, Y.; Perepichka, D. F.; Rosei, F.; Contini, G. The role of halogens in on-surface Ullmann polymerization. Faraday Discuss. 2017, 204, 453–469.
- 24 Di Giovannantonio, M.; El Garah, M.; Lipton-Duffin, J.; Meunier, V.; Cardenas, L.; Fagot Revurat, Y.; Cossaro, A.; Verdini, A.; Perepichka, D. F.; Rosei, F.; Contini, G. Insight into organometallic intermediate and its evolution to covalent bonding in surface-confined ullmann polymerization. ACS Nano 2013, 7, 8190–8198.
- 25 Shi, K. J.; Yuan, D. W.; Wang, C. X.; Shu, C. H.; Li, D. Y.; Shi, Z. L.; Wu, X. Y.; Liu, P. N. Ullmann Reaction of Aryl Chlorides on Various Surfaces and the Application in Stepwise Growth of 2D Covalent Organic Frameworks. Org. Lett. 2016, 18, 1282–1285.
- 26 Lischka, M.; Michelitsch, G. S.; Martsinovich, N.; Eichhorn, J.; Rastgoo-Lahrood, A.; Strunskus, T.; Breuer, R.; Reuter, K.; Schmittel, M.; Lackinger, M. Remote functionalization in surface-assisted dehalogenation by conformational mechanics: organometallic self-assembly of 3,3′,5,5′-tetrabromo-2,2′,4,4′,6,6′-hexafluorobiphenyl on Ag(111). Nanoscale 2018, 10, 12035–12044.
- 27 Sun, K.; Chen, A.; Liu, M.; Zhang, H.; Duan, R.; Ji, P.; Li, L.; Li, Q.; Li, C.; Zhong, D.; Müllen, K.; Chi, L. Surface-Assisted Alkane Polymerization: Investigation on Structure–Reactivity Relationship. J. Am. Chem. Soc. 2018, 140, 4820–4825.
- 28 Fritton, M.; Otte, K.; Björk, J.; Biswas, P. K.; Heckl, W. M.; Schmittel, M.; Lackinger, M. The influence of ortho-methyl substitution in organometallic self-assembly – a comparative study on Cu(111) vs. Ag(111). Chem. Commun. 2018, 54, 9745–9748.
- 29 Fan, Q.; Werner, S.; Tschakert, J.; Ebeling, D.; Schirmeisen, A.; Hilt, G.; Hieringer, W.; Gottfried, J. M. Precise Monoselective Aromatic C-H Bond Activation by Chemisorption of Meta-Aryne on a Metal Surface. J. Am. Chem. Soc. 2018, 140, 7526–7532.
- 30 Liu, J.; Xia, B.; Xu, H.; Lin, N. Controlling the Reaction Steps of Bifunctional Molecules 1,5-Dibromo-2,6-dimethylnaphthalene on Different Substrates. J. Phys. Chem. C 2018, 122, 13001–13008.
- 31 Jiménez-Martín, A.; Gallardo, A.; de la Torre, B. Coverage-modulated halogen bond geometry transformation in supramolecular assemblies. Nanoscale 2023, 15, 16354–16361.
- 32 Flores, F.; Ortega, J.; Vázquez, H. Modelling energy level alignment at organic interfaces and density functional theory. Phys. Chem. Chem. Phys. 2009, 11, 8658–8675.
- 33 Cirera, B.; Björk, J.; Otero, R.; Gallego, J. M.; Miranda, R.; Ecija, D. Efficient Lanthanide Catalyzed Debromination and Oligomeric Length- Controlled Ullmann Coupling of Aryl Halides. J. Phys. Chem. C 2017, 121, 8033–8041.
- 34 Liu, L.; Klaasen, H.; Timmer, A.; Gao, H.-Y.; Barton, D.; Mönig, H.; Neugebauer, J.; Fuchs, H.; Studer, A. α-Diazo Ketones in On-Surface Chemistry. J. Am. Chem. Soc. 2018, 140, 6000–6005.
- 35 Li, Q.; Yang, B.; Lin, H.; Aghdassi, N.; Miao, K.; Zhang, J.; Zhang, H.; Li, Y.; Duhm, S.; Fan, J.; Chi, L. Surface-Controlled Mono/Diselective ortho C–H Bond Activation. J. Am. Chem. Soc. 2016, 138, 2809–2814.
- 36 Björk, J.; Sánchez-Sánchez, C.; Chen, Q.; Pignedoli, C. A.; Rosen, J.; Ruffieux, P.; Feng, X.; Narita, A.; Müllen, K.; Fasel, R. The Role of Metal Adatoms in a Surface-Assisted Cyclodehydrogenation Reaction on a Gold Surface. Angew. Chem. Int. Ed. 2022, 61, e202212354.
- 37 Wang, T.; Zhu, J. Confined on-surface organic synthesis: Strategies and mechanisms. Surf. Sci. Rep. 2019, 74, 97–140.
- 38 Wang, Z.; Yin, R.; Meng, J.; Wang, J.; Liang, Y.; Ma, C.; Tan, S.; Li, Q.; Yang, J.; Wang, B. Self-Limited Embedding Alternating 585-Ringed Divacancies and Metal Atoms into Graphene Nanoribbons. J. Am. Chem. Soc. 2023, 145, 8445–8454.
- 39 Kang, F.; Sun, L.; Gao, W.; Sun, Q.; Xu, W. On-Surface Synthesis of a Carbon Nanoribbon Composed of 4–5–6–8-Membered Rings. ACS Nano 2023, 17, 8717–8722.
- 40 Dong, L.; Liu, P. N.; Lin, N. Surface-Activated Coupling Reactions Confined on a Surface. Acc. Chem. Res. 2015, 48, 2765–2774.
- 41 Björk, J.; Hanke, F. Towards Design Rules for Covalent Nanostructures on Metal Surfaces. Chem. Eur. J. 2014, 20, 928–934.
- 42 Xing, L.; Li, J.; Bai, Y.; Lin, Y.; Xiao, L.; Li, C.; Zhao, D.; Wang, Y.; Chen, Q.; Liu, J.; Wu, K. Surface-confined alternating copolymerization with molecular precision by stoichiometric control. Nat. Commun. 2024, 15, 666.
- 43 Shen, Q.; Gao, H.-Y.; Fuchs, H. Frontiers of on-surface synthesis: From principles to applications. Nano Today 2017, 13, 77–96.
- 44 Talirz, L.; Ruffieux, P.; Fasel, R. On-Surface Synthesis of Atomically Precise Graphene Nanoribbons. Adv. Mater. 2016, 28, 6222–6231.
- 45 Goronzy, D. P.; Ebrahimi, M.; Rosei, F.; Arramel; Fang, Y.; De Feyter, S.; Tait, S. L.; Wang, C.; Beton, P. H.; Wee, A. T. S.; Weiss, P. S.; Perepichka, D. F. Supramolecular Assemblies on Surfaces: Nanopatterning, Functionality, and Reactivity. ACS Nano 2018, 12, 7445–7481.
- 46
Hu, J.; Liang, Z.; Shen, K.; Sun, H.; Jiang, Z.; Song, F.; Attariani, H. Recent Progress in the Fabrication of Low Dimensional Nanostructures via Surface-Assisted Transforming and Coupling. J. Nanomater. 2017, 2017, 17.
10.1155/2017/4796538 Google Scholar
- 47 Tautz, F. S. Structure and bonding of large aromatic molecules on noble metal surfaces: The example of PTCDA. Prog. Surf. Sci. 2007, 82, 479–520.
- 48 Hammer, B.; Norskov, J. K. Why gold is the noblest of all the metals. Nature 1995, 376, 238–240.
- 49 Zhang, X.; Li, N.; Wang, H.; Yuan, C.; Gu, G.; Zhang, Y.; Nieckarz, D.; Szabelski, P.; Hou, S.; Teo, B. K.; Wang, Y. Influence of Relativistic Effects on Assembled Structures of V-Shaped Bispyridine Molecules on M(111) Surfaces Where M = Cu, Ag, Au. ACS Nano 2017, 11, 8511–8518.
- 50 Horcas, I.; Fernández, R.; Gómez-Rodríguez, J. M.; Colchero, J.; Gómez-Herrero, J.; Baro, A. M. WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705.
- 51 Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
- 52 Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.