Exploring the Magnetism of C5/C2B3 Heteroleptic Organolanthanide Sandwiches
Ye-Ye Liu
Frontier Institute of Science and Technology (FIST), State Key Laboratory of Electrical Insulation and Power Equipment, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Key Laboratory of Electronic Devices and Material Chemistry and School of Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi, 710054 China
Search for more papers by this authorQian-Cheng Luo
Frontier Institute of Science and Technology (FIST), State Key Laboratory of Electrical Insulation and Power Equipment, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Key Laboratory of Electronic Devices and Material Chemistry and School of Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi, 710054 China
Search for more papers by this authorCorresponding Author
Peng-Bo Jin
Frontier Institute of Science and Technology (FIST), State Key Laboratory of Electrical Insulation and Power Equipment, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Key Laboratory of Electronic Devices and Material Chemistry and School of Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi, 710054 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Yan-Zhen Zheng
Frontier Institute of Science and Technology (FIST), State Key Laboratory of Electrical Insulation and Power Equipment, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Key Laboratory of Electronic Devices and Material Chemistry and School of Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi, 710054 China
Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710061 China
E-mail: [email protected]; [email protected]Search for more papers by this authorYe-Ye Liu
Frontier Institute of Science and Technology (FIST), State Key Laboratory of Electrical Insulation and Power Equipment, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Key Laboratory of Electronic Devices and Material Chemistry and School of Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi, 710054 China
Search for more papers by this authorQian-Cheng Luo
Frontier Institute of Science and Technology (FIST), State Key Laboratory of Electrical Insulation and Power Equipment, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Key Laboratory of Electronic Devices and Material Chemistry and School of Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi, 710054 China
Search for more papers by this authorCorresponding Author
Peng-Bo Jin
Frontier Institute of Science and Technology (FIST), State Key Laboratory of Electrical Insulation and Power Equipment, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Key Laboratory of Electronic Devices and Material Chemistry and School of Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi, 710054 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Yan-Zhen Zheng
Frontier Institute of Science and Technology (FIST), State Key Laboratory of Electrical Insulation and Power Equipment, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Key Laboratory of Electronic Devices and Material Chemistry and School of Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi, 710054 China
Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710061 China
E-mail: [email protected]; [email protected]Search for more papers by this authorComprehensive Summary
Two families of cyclopentadienyl (Cp)/carboranyl heteroleptic sandwiched organolanthanide complexes, namely [Ln{η5:σ-Me2C(C5H4)(C2B10H10)}2][Li(DME)3] (1Ln, Ln = Tb, Dy, Ho, Er) and [2-THF-2'-(μ2-Cl)Li(THF)3-2,2'-Ln(nido-1,7-C2B9H11)Cp*] (2Dy), were synthesized. Family of 1Ln has been proposed based on the mixing-ligands idea by linking Cp and nido-dicarborllide. However, the carborane cage of [Me2C(C5H4)(C2B10H10)]2− deprotons and forms a mono-C− anion rather than deboron to form dicarborllide dianion. Hence, the family of 1Ln features a dysprosocenium skeleton with extra two coordination of C− anions of carborllides. Such coordination geometry is more like a tetrahedron if abstracting the centroids of two coordinated Cp rings. In this cubic-type geometry, no significant magnetic axiality is presented; only 1Dy and 1Tb show field-induced slow magnetic relaxation behavior below 10 K. Inspired by 1Ln, the free pentamethylcyclopentadienyl (Cp*−) and nido-dicarborllide ligands are used to sandwich central Dy3+ ion, achieving heteroleptic complex 2Dy. The bending angle by linking the centroid of Cp*−, Dy3+ and C2B32− in 2Dy is increased to 132.8(1)°. As such, the effective energy barrier for magnetic reversal (Ueff) and magnetic blocking temperature TB (ZFC) are both increased (Ueff = 616(10) K; TB = 6 K). The effort of further enhancing Ueff and TB in such heteroleptic organolanthanide sandwiches should rely on keeping increasing the ligand axiality.
Supporting Information
Filename | Description |
---|---|
cjoc202400730-sup-0001-supinfo.pdfPDF document, 3.8 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Day, B. M.; Guo; F.-S.; Layfield, R. A. Cyclopentadienyl Ligands in Lanthanide Single-Molecule Magnets: One Ring To Rule Them All? Acc. Chem. Res. 2018, 51, 1880–1889.
- 2 Sessoli, R.; Gatteschi, D.; Caneschi, A.; Novak, M. A. Magnetic Bistability in a Metal-ion Cluster. Nature 1993, 365, 141–143.
- 3 Kiselev, S. I.; Sankey, J. C.; Krivorotov, I. N.; Emley, N. C.; Schoelkopf, R. J.; Buhrman, R. A.; Ralph, D. C. Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 2003, 425, 380–383.
- 4 Thirion, C.; Wernsdorfer, W.; Mailly, D. Switching of magnetization by nonlinear resonance studied in single nanoparticles. Nat. Mater. 2003, 2, 524–527.
- 5 Guo, F.-S.; Bar, A. K.; Layfield, R. A. Main Group Chemistry at the Interface with Molecular Magnetism. Chem. Rev. 2019, 119, 8479–8505.
- 6
Salazar, D.; Martin-Cid, A.; Madugundo, R.; Barandiaran, J. M.; Hadjipanayis, G. C. Coercivity enhancement in heavy rare earth-free NdFeB magnets by grain boundary diffusion process. Appl. Phys. Lett. 2018, 113, 152402.
10.1063/1.5043389 Google Scholar
- 7 Vincent, R.; Klyatskaya, S.; Ruben, M.; Wernsdorfer, W.; Balestro, F. Electronic read-out of a single nuclear spin using a molecular spin transistor. Nature 2012, 488, 357–360.
- 8 Sessoli, R. Materials Science Magnetic molecules back in the race. Nature 2017, 548, 400–401.
- 9 Shiddiq, M.; Komijani, D.; Duan, Y.; Gaita-Arino, A.; Coronado, E.; Hill, S. Enhancing coherence in molecular spin qubits via atomic clock transitions. Nature 2016, 531, 348–351.
- 10
Wang, J.-H.; Li, Z.-Y.; Yamashita, M.; Bu, X.-H. Recent progress on cyano-bridged transition-metal-based single-molecule magnets and single-chain magnets. Coord. Chem. Rev. 2021, 428, 214637.
10.1016/j.ccr.2020.213617 Google Scholar
- 11 Luo, Q. C.; Ge, N.; Zhai, Y. Q.; Wang, T.; Sun, L.; Sun, Q.; Li, F.; Fu, Z.; Zheng Y.Z. Switching the coordination geometry to enhance erbium (III) single-molecule magnets. Chin. Chem. Lett. 2023, 34, 107547.
- 12 Luo, Q. C.; Zheng, Y. Z. Mitigating Raman relaxation for high-temperature single-molecule magnets. Trends Chem. 2023, 5, 869–872.
- 13 Li, Z. H.; Luo, Q. C.; Zheng, Y. Z. Research progress of rare earth single-molecule magnets. J. Chin. Soc. Rare Earths 2021, 39, 391 (in Chinese).
- 14 Ding, Y.-S.; Blackmore, W. J. A.; Zhai, Y.-Q.; Giansiracusa, M. J.; Reta, D.; Vitorica-Yrezabal, I.; Winpenny, R. E. P.; Chilton, N. F.; Zheng, Y.-Z. Studies of the Temperature Dependence of the Structure and Magnetism of a Hexagonal-Bipyramidal Dysprosium(III) Single-Molecule Magnet. Inorg. Chem. 2022, 61, 227–235.
- 15 Ganzhorn, M.; Klyatskaya, S.; Ruben, M.; Wernsdorfer, W. Strong spin-phonon coupling between a single-molecule magnet and a carbon nanotube nanoelectromechanical system. Nat. Nanotechnol. 2013, 8, 165–169.
- 16 Zhu, Z.; Paul, S.; Zhao, C.; Wu, J.; Ying, X.; Ungur, L.; Wernsdorfer, W.; Meyer, F.; Tang, J. Record Quantum Tunneling Time in an Air-Stable Exchange-Bias Dysprosium Macrocycle. J. Am. Chem. Soc. 2024, 146, 18899–18904.
- 17 Zhu, Z.; Zhao, C.; Feng, T.; Liu, X.; Ying, X.; Li, X.-L.; Zhang, Y.-Q.; Tang, J. Air-Stable Chiral Single-Molecule Magnets with Record Anisotropy Barrier Exceeding 1800 K. J. Am. Chem. Soc. 2021, 143, 10077–10082.
- 18 Liu, J.; Chen, Y.-C.; Liu, J.-L.; Vieru, V.; Ungur, L.; Jia, J.-H.; Chibotaru, L. F.; Lan, Y.; Wernsdorfer, W.; Gao, S.; Chen, X.-M.; Tong, M.-L. A Stable Pentagonal Bipyramidal Dy (III) Single-Ion Magnet with a Record Magnetization Reversal Barrier over 1000 K. J. Am. Chem. Soc. 2016, 138, 5441–5450.
- 19 Xu, W.-J.; Luo, Q.-C.; Li Z.-H.; Zhai, Y.-Q.; Zheng, Y.-Z. Bis-Alkoxide Dysprosium (III) Crown Ether Complexes Exhibit Tunable Air Stability and Record Energy Barrier. Adv. Sci. 2024, 11, 2308548.
- 20 Lis, T. Preparation, structure, and magnetic properties of a dodecanuclear mixed-valence manganese carboxylate. Acta Crystallogr., Sect. B: Struct. Sci. 1980, 36, 2042–2046.
- 21 Sessoli, R.; Tsai, H. L.; Schake, A. R.; Wang, S.; Vincent, J. B.; Folting, K.; Gatteschi, D.; Christou, G.;Hendrickson, D. N. High-spin molecules: [Mn12O12(O2CR)16(H2O)4]. J. Am. Chem. Soc. 1993, 115, 1804–1816.
- 22 Waldmann. A criterion for the anisotropy barrier in single-molecule magnets. Inorg. Chem. 2007, 46, 10035–10037.
- 23 Milios, C. J.; Vinslava, A.; Wernsdorfer, W.; Moggach, S.; Parsons, S.; Perlepes, S. P.; Christou, G.; Brechin, E. K. A record anisotropy barrier for a single-molecule magnet. J. Am. Chem. Soc. 2007, 129, 2754–2755.
- 24 Mukherjee, S.; Abboud, K. A.; Wernsdorfer, W.; Christou, G. Comproportionation Reactions to Manganese (III/IV) Pivalate Clusters: A New Half-Integer Spin Single-Molecule Magnet. Inorg. Chem. 2013, 52, 873–884.
- 25 Sessoli, R.; Powell, A. K. Strategies towards single molecule magnets based on lanthanide ions. Coord. Chem. Rev. 2009, 253, 2328–2341.
- 26 Ishikawa, N.; Sugita, M.; Ishikawa, T.; Koshihara, S.; Kaizu, Y. Lanthanide double-decker complexes functioning as magnets at the single- Dymolecular level. J. Am. Chem. Soc. 2003, 125, 8694–8695.
- 27 Woodruff, D. N.; Winpenny, R. E. P.; Layfield, R. A. Lanthanide Single-Molecule Magnets. Chem. Rev. 2013, 113, 5110–5148.
- 28 Zhu, Z.; Tang, J. Lanthanide single-molecule magnets with high anisotropy barrier: where to from here? Natl. Sci. Rev. 2022, 9, nwac194.
- 29 Baldovi, J. J.; Borras-Almenar, J. J.; Clemente-Juan, J. M.; Coronado, E.; Gaita-Arino, A. Modeling the properties of lanthanoid single-ion magnets using an effective point-charge approach. Dalton Trans. 2012, 41, 13705–13710.
- 30 Rinehart, J. D.; Long, J. R. Exploiting single-ion anisotropy in the design of f-element single-molecule magnets. Chem. Sci. 2011, 2, 2078–2085.
- 31 Chilton, N. F.; Collison, D.; McInnes, E. J. L.; Winpenny, R. E. P.; Soncini, A. An electrostatic model for the determination of magnetic anisotropy in dysprosium complexes. Nat. Commun. 2013, 4, 2551.
- 32 Meng, Y.-S.; Zhang, Y.-Q.; Wang, Z.-M.; Wang, B.-W; Gao, S. Weak Ligand-Field Effect from Ancillary Ligands on Enhancing Single-Ion Magnet Performance. Chem. Eur. J. 2016, 22, 12724–12731.
- 33 Layfield, R. A.; McDouall, J. J. W.; Sulway, S. A.; Tuna, F.; Collison, D.; Winpenny, R. E. P. Influence of the N-Bridging Ligand on Magnetic Relaxation in an Organometallic Dysprosium Single-Molecule Magnet. Chem. Eur. J. 2010, 16, 4442–4446.
- 34 Meng, Y. S.; Xiong, J.; Yang, M. W.; Qiao, Y. S.; Zhong, Z. Q.; Sun, H. L.; Han, J. B.; Liu, T.; Wang, B. W.; Gao, S. Experimental Determination of Magnetic Anisotropy in Exchange-Bias Dysprosium Metallocene Single-Molecule Magnets. Angew. Chem. Int. Ed. 2020, 59, 13037–13043.
- 35 Wang, Y. D.; Luo, Q. C.; Zheng, Y. Z. Organolanthanide Single-Molecule Magnets with Heterocyclic Ligands. Angew. Chem. Int. Ed. 2024, e202407016.
- 36 Grindell, R.; Day, B. M.; Guo, F. S.; Pugh, T.; Layfield, R. A. Activation of C-H bonds by rare-earth metallocene-butyl complexes. Chem. Commun. 2017, 53, 9990–9993.
- 37 Pugh, T.; Chilton, N. F.; Layfield, R. A. A Low-Symmetry Dysprosium Metallocene Single-Molecule Magnet with a High Anisotropy Barrier. Angew. Chem. Int. Ed. 2016, 55, 11082–11085.
- 38 Sulway, S. A.; Layfield, R. A.; Tuna, F.; Wernsdorfer, W.; Winpenny, R. E. P. Single-molecule magnetism in cyclopentadienyl-dysprosium chlorides. Chem. Commun. 2012, 48, 1508–1510.
- 39 Guo, F. S.; Layfield, R. A. Strong direct exchange coupling and single-molecule magnetism in indigo-bridged lanthanide dimers. Chem. Commun. 2017, 53, 3130–3133.
- 40 Zhang, P.; Luo, Q. C.; Zhu, Z. H.; He, W. R.; Song, N.; Lv, J. T.; Wang, X. N.; Zhai, Q. G.; Zheng, Y. Z.; Tang, J. K. Radical-Bridged Heterometallic Single-Molecule Magnets Incorporating Four Lanthanoceniums. Angew. Chem. Int. Ed. 2023, 62, e202218540.
- 41 Bar, A. K.; Heras Ojea, M. J.; Tang, J.; Layfield, R. A. Coupling of Nitric Oxide and Release of Nitrous Oxide from Rare-Earth-Dinitrosyliron Complexes. J. Am. Chem. Soc. 2020, 142, 4104–4107.
- 42 Collins, R.; Heras Ojea, M. J.; Mansikkamäki, A.; Tang, J.; Layfield, R. A. Carbonyl Back-Bonding Influencing the Rate of Quantum Tunnelling in a Dysprosium Metallocene Single-Molecule Magnet. Inorg. Chem. 2020, 59, 642–647.
- 43 Meng, Y. S.; Jiang, S. D.; Wang, B. W.; Gao, S. Understanding the Magnetic Anisotropy toward Single-Ion Magnets. Acc. Chem. Res. 2016, 49, 2381–2389.
- 44 Guo, F. S.; Day, B. M.; Chen, Y. C.; Tong, M. L.; Mansikkamaki, A.; Layfield, R. A. A Dysprosium Metallocene Single-Molecule Magnet Functioning at the Axial Limit. Angew. Chem. Int. Ed. 2017, 56, 11445–11449.
- 45 Goodwin, C. A. P.; Ortu, F.; Reta, D.; Chilton, N. F.; Mills, D. P. Molecular magnetic hysteresis at 60 Kelvin in dysprosocenium. Nature 2017, 548, 439–442.
- 46 Gould, C. A.; McClain, K. R.; Yu, J. M.; Groshens, T. J.; Furche, F.; Harvey, B. G.; Long, J. R. Synthesis and Magnetism of Neutral, Linear Metallocene Complexes of Terbium (II) and Dysprosium (II). J. Am. Chem. Soc. 2019, 141, 12967–12973.
- 47 McClain, K. R.; Gould, C. A.; Chakarawet, K.; Teat, S. J.; Groshens, T. J.; Long, J. R.; Harvey, B. G. High-temperature magnetic blocking and magneto-structural correlations in a series of dysprosium (III) metallocenium single-molecule magnets. Chem. Sci. 2018, 9, 8492–8503.
- 48 Long, J. R.; Chilton, N. F.; Vincent, A. H.; Whyatt, Y. L. Strong Axiality in a Dysprosium (III) Bis(borolide) Complex Leads to Magnetic Blocking at 65 K. J. Am. Chem. Soc. 2023, 145, 1572–1579.
- 49 Vanjak, J. C.; Wilkins, B. O.; Vieru, V.; Bhuvanesh, N. S.; Reibenspies, J. H.; Martin, C. D.; Chibotaru, L. F.; Nippe, M. A High-Performance Single-Molecule Magnet Utilizing Dianionic Aminoborolide Ligands. J. Am. Chem. Soc. 2022, 144, 17743–17747.
- 50 Evans, P.; Reta, D.; Whitehead, G. F. S.; Chilton, N. F.; Mills, D. P. Bis-Monophospholyl Dysprosium Cation Showing Magnetic Hysteresis at 48 K. J. Am. Chem. Soc. 2019, 141, 19935–19940.
- 51 Jiang, S. D.; Wang, B. W.; Sun, H. L.; Wang, Z. M.; Gao, S. An Organometallic Single-Ion Magnet. J. Am. Chem. Soc. 2011, 133, 4730–4733.
- 52 Guo, F.-S.; Day, B. M.; Chen, Y.-C.; Tong, M.-L.; Mansikkamaki, A.; Layfield, R. A. Magnetic hysteresis up to 80 Kelvin in a dysprosium metallocene single-molecule magnet. Science 2018, 362, 1400–1403.
- 53 Durrant, J. P.; Day, B. M.; Tang, J. K.; Mansikkamäki, A.; Layfield, R. A. Dominance of Cyclobutadienyl Over Cyclopentadienyl in the Crystal Field Splitting in Dysprosium Single-Molecule Magnet. Angew. Chem. Int. Ed. 2022, 61, e202200525.
- 54 Guo, F. S.; He, M.; Huang, G. Z.; Giblin, S. R.; Billington, D.; Heinemann, F. W.; Tong, M. L.; Mansikkamaki, A.; Layfield, R. A. Discovery of a Dysprosium Metallocene Single-Molecule Magnet with Two High-Temperature Orbach Processes. Inorg. Chem. 2022, 61, 6017–6025.
- 55 Jin, P.-B.; Zhai, Y.-Q.; Yu, K.-X.; Winpenny, R. E. P.; Zheng, Y.-Z. Dysprosiacarboranes as Organometallic Single-Molecule Magnets. Angew. Chem. Int. Ed. 2020, 59, 9350–9354.
- 56 Jin, P.-B.; Yu, K.-X.; Luo, Q.-C.; Liu, Y.-Y.; Zhai, Y.-Q.; Zheng, Y.-Z. Tetraanionic arachno-Carboranyl Ligand Imparts Strong Axiality to Terbium (III) Single-Molecule Magnets. Angew. Chem. Int. Ed. 2022, 61, e202203285.
- 57 Jin, P.-B.; Luo, Q.-C.; Zhai, Y.-Q.; Wang, Y.-D.; Ma, Y.; Tian, L.; Zhang, X.; Ke, C.; Zhang, X.-F.; Lv, Y.; Zheng, Y.-Z. A study of cation-dependent inverse hydrogen bonds and magnetic exchange-couplings in lanthanacarborane complexes. iScience 2021, 24, 102760.
- 58
Liu, Y.-Y.; Luo, Q.-C.; Jin, P.-B.; Zhai, Y.-Q.; Zheng, Y.-Z. Fine tuning dynamic magnetism of dysprosiacarboranyl sandwiches. J. Rare Earths 2024, DOI: https://doi.org/10.1016/j.jre.2024.05.008.
10.1016/j.jre.2024.05.008 Google Scholar
- 59 Beckett, M. A.; Brellochs, B.; Chizhevsky, I. T.; Damhus T.; Hellwich, K. H.; Kennedy, J. D.; Laitinen, R.; Powell, W. H.; Rabinovich, D.; Viñas, C.; Yerin, A. Nomenclature for boranes and related species (IUPAC Recommendations 2019). Pure Appl. Chem. 2020, 92, 355–381.
- 60 Wang, Y. R.; Liu, D. M.; Chan, H. S.; Xie, Z. W. Synthesis, structural characterization, and reactivity of group 4 metallacarboranes containing the ligand [Me2C(C5H4)(C2B9H10)]3−. Organometallics 2008, 27, 2825–2832.
- 61 Chui, K. L.; Yang, Q. C.; Mak, T. C. W.; Xie, Z. W. Synthesis, structure, and reactivity of organolanthanide carboranyl compounds and lanthanacarboranes derived from a versatile ligand. Me2C(C5H5)(C2B10H11). Organometallics 2000, 19, 1391–1401.
- 62 Pugliese, E. R.; Benner, F.; Castellanos, E.; Delano, F.; Demir, S. Heteroleptic Rare-Earth Tris(metallocenes) Containing a Dibenzocyclooctatetraene Dianion. Inorg. Chem. 2022, 61, 2444–2454.
- 63 Evans, W. J.; Kozimor, S. A.; Ziller, J. W.; Kaltsoyannis, N. Structure, reactivity, and density functional theory analysis of the six-electron reductant, [(C5Me5)2U]2(μ-η6: η6-C6H6), synthesized via a new mode of (C5Me5)3M reactivity. J. Am. Chem. Soc. 2004, 126, 14533–14547.
- 64 Luo, Q. C.; Ge, N.; Zhai, Y. Q.; Wang, T. B.; Sun, L.; Sun, Q.; Li, F. N.; Ouyang, Z. W.; Wang, Z. X.; Zheng, Y. Z. A C, S bonded quasi-two-coordinate chromium(II) complex showing field-induced slow magnetic relaxation behaviour. Dalton Trans. 2022, 51, 9218–9222.
- 65 Cole, K. S.; Cole, R. H. Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 1941, 9, 341–351.
- 66 Xemard, M.; Cordier, M.; Molton, F.; Duboc, C.; Guennic, N.; Le, B.; Maury, O.; Cador, O.; Nocton, G. Divalent Thulium Crown Ether Complexes with Field-Induced Slow Magnetic Relaxation. Inorg. Chem. 2019, 58, 2872–2880.
- 67 Wang, M.; Meng, X.; Liu, N.; Zhang, Y.-Q.; Xu, N.; Shi, W.; Cheng, P. Two monofluoride-bridged Dy III dimers with different magnetization dynamics. Chin. Chem. Lett. 2023, 34, 107995.
- 68 Galván, I. F.; Vacher, M.; Alavi, A.; Angeli, C.; Aquilante, F.; Autschbach, J.; Bao, J. J.; Bokarev, S. I.; Bogdanov, N. A.; Carlson, R. K.; Chibotaru, L. F.; Creutzberg, J.; Dattani, N.; Delcey, M. G.; Dong, S. J. S.; Dreuw, A.; Freitag, L.; Frutos, L. M.; Gagliardi, L.; Gendron, F.; Giussani, A.; González, L.; Grell, G.; Guo, M. Y.; Hoyer, C. E.; Johansson, M.; Keller, S.; Knecht, S.; Kovacevic, G.; Källman, E.; Li Manni, G.; Lundberg, M.; Ma, Y. J.; Mai, S.; Malhado, J. P.; Malmqvist, P.; Marquetand, P.; Mewes, S. A.; Norell, J.; Olivucci, M.; Oppel, M.; Phung, Q. M.; Pierloot, K.; Plasser, F.; Reiher, M.; Sand, A. M.; Schapiro, I.; Sharma, P.; Stein, C. J.; Sorensen, L. K.; Truhlar, D. G.; Ugandi, M.; Ungur, L.; Valentini, A.; Vancoillie, S.; Veryazov, V.; Weser, O.; Wesolowski, T. A.; Widmark, P. O.; Wouters, S.; Zech, A.; Zobel, J. P.; Lindh, R. OpenMolcas: From Source Code to Insight. J. Chem. Theory Comput. 2019, 15, 5925–5964.
- 69 Evans, P.; Reta, D.; Goodwin, C. A. P.; Ortu, F.; Chilton, N. F.; Mills, D. P. A double-dysprosocenium single-molecule magnet bound together with neutral ligands. Chem. Commun. 2020, 56, 5677–5680.
- 70 Meng, Y. S.; Zhang, Y. Q.; Wang, Z. M.; Wang, B. W.; Gao, S. Weak Ligand-Field Effect from Ancillary Ligands on Enhancing Single-Ion Magnet Performance. Chem. Eur. J. 2016, 22, 12724–12731.
- 71 Chen, S. M.; Xiong, J.; Zhang, Y. Q.; Ma, F.; Sun, H. L.; Wang, B. W.; Gao, S. Dysprosium complexes bearing unsupported Dy-III-Ge-II/ Sn-II metal-metal bonds as single-ion magnets. Chem. Commun. 2019, 55, 8250–8253.
- 72 Errulat, D.; Gabidullin, B.; Mansikkamaki, A.; Murugesu, M. Two heads are better than one: improving magnetic relaxation in the dysprosium metallocene DyCp*2BPh4 upon dimerization by use of an exceptionally weakly-coordinating anion. Chem. Commun. 2020, 56, 5937–5940.
- 73 Evans, P.; Reta, D.; Goodwin, C. A. P.; Ortu, F.; Chilton, N. F.; Mills, D. P. A double-dysprosocenium single-molecule magnet bound together with neutral ligands. Chem. Commun. 2020, 56, 5677–5680.