Simultaneous Optimization of Efficiency, Stretchability, and Stability in All-Polymer Solar Cells via Aggregation Control†
Kaihu Xian
School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering Tianjin, 300350 China
Search for more papers by this authorKangkang Zhou
School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering Tianjin, 300350 China
Search for more papers by this authorMingfei Li
School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering Tianjin, 300350 China
Search for more papers by this authorJunwei Liu
School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering Tianjin, 300350 China
Search for more papers by this authorYaowen Zhang
Shanghai Synchrotron Radiation Facility, Shanghai, Advanced Research Institute, Chinese Academy of Sciences Shanghai, 201204 China
Search for more papers by this authorTao Zhang
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190, China
Search for more papers by this authorYong Cui
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190, China
Search for more papers by this authorWenchao Zhao
College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037 China
Search for more papers by this authorChunming Yang
Shanghai Synchrotron Radiation Facility, Shanghai, Advanced Research Institute, Chinese Academy of Sciences Shanghai, 201204 China
Search for more papers by this authorJianhui Hou
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190, China
Search for more papers by this authorYanhou Geng
School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering Tianjin, 300350 China
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou, Fujian, 350207 China
Search for more papers by this authorCorresponding Author
Long Ye
School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering Tianjin, 300350 China
E-mail: [email protected]Search for more papers by this authorKaihu Xian
School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering Tianjin, 300350 China
Search for more papers by this authorKangkang Zhou
School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering Tianjin, 300350 China
Search for more papers by this authorMingfei Li
School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering Tianjin, 300350 China
Search for more papers by this authorJunwei Liu
School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering Tianjin, 300350 China
Search for more papers by this authorYaowen Zhang
Shanghai Synchrotron Radiation Facility, Shanghai, Advanced Research Institute, Chinese Academy of Sciences Shanghai, 201204 China
Search for more papers by this authorTao Zhang
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190, China
Search for more papers by this authorYong Cui
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190, China
Search for more papers by this authorWenchao Zhao
College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037 China
Search for more papers by this authorChunming Yang
Shanghai Synchrotron Radiation Facility, Shanghai, Advanced Research Institute, Chinese Academy of Sciences Shanghai, 201204 China
Search for more papers by this authorJianhui Hou
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190, China
Search for more papers by this authorYanhou Geng
School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering Tianjin, 300350 China
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou, Fujian, 350207 China
Search for more papers by this authorCorresponding Author
Long Ye
School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering Tianjin, 300350 China
E-mail: [email protected]Search for more papers by this author†Dedicated to the Special Issue of Emerging Investigators in 2022.
Comprehensive Summary
With the emergence of Y-series small molecule acceptors, polymerizing the small molecule acceptors with aromatic linker units has attracted significant research attention, which has greatly advanced the photovoltaic performance of all-polymer solar cells. Despite the rapid increase in efficiency, the unique characteristics (e. g., mechanical stretchability and flexibility) of all-polymer systems were still not thoroughly explored. In this work, we demonstrate an effective approach to simultaneously improve device performance, stability, and mechanical robustness of all-polymer solar cells by properly suppressing the aggregation and crystallization behaviors of polymerized Y-series acceptors. Strikingly, when introducing 50 wt% PYF-IT (a fluorinated version of PY-IT) into the well-known PM6:PY-IT system, the all-polymer devices delivered an impressive photovoltaic efficiency of 16.6%, significantly higher than that of the control binary cell (15.0%). Compared with the two binary systems, the optimal ternary blend exhibits more efficient charge separation and balanced charge transport accompanying with less recombination. Moreover, a high-performance 1.0 cm2 large-area device of 15% efficiency was demonstrated for the optimized ternary all-polymer blend, which offered a desirable PCE of 14.5% on flexible substrates and improved mechanical flexibility after bending 1000 cycles. Notably, these are among the best results for 1.0 cm2 all-polymer OPVs thus far. This work also heralds a bright future of all-polymer systems for flexible wearable energy-harvesting applications.
Supporting Information
Filename | Description |
---|---|
cjoc202200564-sup-0001-Supinfo.pdfPDF document, 1,011.6 KB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Cheng, P.; Li, G.; Zhan, X.; Yang, Y. Next-generation organic photovoltaics based on non-fullerene acceptors. Nat. Photonics 2018, 12, 131–142.
- 2 Wan, X.; Li, C.; Zhang, M.; Chen, Y. Acceptor-donor-acceptor type molecules for high performance organic photovoltaics-chemistry and mechanism. Chem. Soc. Rev. 2020, 49, 2828–2842.
- 3 Wang, J.; Xue, P.; Jiang, Y.; Huo, Y.; Zhan, X. The principles, design and applications of fused-ring electron acceptors. Nat. Rev. Chem. 2022, 6, 614–634.
- 4 Liu, Y.; Liu, B.; Ma, C.-Q.; Huang, F.; Feng, G.; Chen, H.; Hou, J.; Yan, L.; Wei, Q.; Luo, Q.; Bao, Q.; Ma, W.; Liu, W.; Li, W.; Wan, X.; Hu, X.; Han, Y.; Li, Y.; Zhou, Y.; Zou, Y.; Chen, Y.; Li, Y.; Chen, Y.; Tang, Z.; Hu, Z.; Zhang, Z.-G.; Bo, Z. Recent progress in organic solar cells (Part I material science). Sci. China Chem. 2021, 65, 224–268.
- 5 Cui, Y.; Xu, Y.; Yao, H.; Bi, P.; Hong, L.; Zhang, J.; Zu, Y.; Zhang, T.; Qin, J.; Ren, J.; Chen, Z.; He, C.; Hao, X.; Wei, Z.; Hou, J. Single-Junction Organic Photovoltaic Cell with 19% Efficiency. Adv. Mater. 2021, 33, 2102420.
- 6 Sun, R.; Wu, Y.; Yang, X.; Gao, Y.; Chen, Z.; Li, K.; Qiao, J.; Wang, T.; Guo, J.; Liu, C.; Hao, X.; Zhu, H.; Min, J. Single-Junction Organic Solar Cells with 19.17% Efficiency Enabled by Introducing One Asymmetric Guest Acceptor. Adv. Mater. 2022, 34, 2110147.
- 7 Chong, K.; Xu, X.; Meng, H.; Xue, J.; Yu, L.; Ma, W.; Peng, Q. Realizing 19.05% Efficiency Polymer Solar Cells by Progressively Improving Charge Extraction and Suppressing Charge Recombination. Adv. Mater. 2022, 34, 2109516.
- 8 He, C.; Pan, Y.; Ouyang, Y.; Shen, Q.; Gao, Y.; Yan, K.; Fang, J.; Chen, Y.; Ma, C.; Min, J.; Zhang, C.; Zuo, L.; Chen, H. Manipulating the D:A Interfacial Energetics and Intermolecular Packing for 19.2% Efficiency Organic Photovoltaics. Energy Environ. Sci. 2022, 15, 2537–2544.
- 9 Zhu, L.; Zhang, M.; Xu, J.; Li, C.; Yan, J.; Zhou, G.; Zhong, W.; Hao, T.; Song, J.; Xue, X.; Zhou, Z.; Zeng, R.; Zhu, H.; Chen, C. C.; MacKenzie, R. C. I.; Zou, Y.; Nelson, J.; Zhang, Y.; Sun, Y.; Liu, F. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater. 2022, 21, 656–663.
- 10 Xu, X.; Wu, H.; Liang, S.; Tang, Z.; Li, M.; Wang, J.; Wang, X.; Wen, J.; Zhou, E.; Li, W.; Ma, Z. Quantum Efficiency and Voltage Losses in P3HT: Non-fullerene Solar Cells. Acta Phys.-Chim. Sin. 2022, 38, 2201039.
- 11 Liu, Y.; Liu, B.; Ma, C.-Q.; Huang, F.; Feng, G.; Chen, H.; Hou, J.; Yan, L.; Wei, Q.; Luo, Q.; Bao, Q.; Ma, W.; Liu, W.; Li, W.; Wan, X.; Hu, X.; Han, Y.; Li, Y.; Zhou, Y.; Zou, Y.; Chen, Y.; Liu, Y.; Meng, L.; Li, Y.; Chen, Y.; Tang, Z.; Hu, Z.; Zhang, Z.-G.; Bo, Z. Recent progress in organic solar cells (Part II device engineering). Sci. China Chem. 2022, 65, 1457–1497.
- 12 Lee, J. W.; Kim, G. U.; Kim, D. J.; Jeon, Y.; Li, S.; Kim, T. S.; Lee, J. Y.; Kim, B. J. Intrinsically-Stretchable, Efficient Organic Solar Cells Achieved by High-Molecular-Weight, Electro-Active Polymer Acceptor Additives. Adv. Energy Mater. 2022, 12, 2200887.
- 13 Li, H.; Liu, S.; Wu, X.; Qi, Q.; Zhang, H.; Meng, X.; Hu, X.; Ye, L.; Chen, Y. A general enlarging shear impulse approach to green printing large-area and efficient organic photovoltaics. Energy Environ. Sci. 2022, 15, 2130–2138.
- 14 Sun, Y.; Liu, T.; Kan, Y.; Gao, K.; Tang, B.; Li, Y. Flexible Organic Solar Cells: Progress and Challenges. Small Sci. 2021, 1, 2100001.
- 15 Meng, X.; Hu, X.; Zhang, Y.; Huang, Z.; Xing, Z.; Gong, C.; Rao, L.; Wang, H.; Wang, F.; Hu, T.; Tan, L.; Song, Y.; Chen, Y. A Biomimetic Self-Shield Interface for Flexible Perovskite Solar Cells with Negligible Lead Leakage. Adv. Funct. Mater. 2021, 31, 2106460.
- 16 Wang, H.; Huang, Z.; Xiao, S.; Meng, X.; Xing, Z.; Rao, L.; Gong, C.; Wu, R.; Hu, T.; Tan, L.; Hu, X.; Zhang, S.; Chen, Y. An in situ bifacial passivation strategy for flexible perovskite solar module with mechanical robustness by roll-to-roll fabrication. J. Mater. Chem. A 2021, 9, 5759–5768.
- 17 Zhang, Z. G.; Li, Y. Polymerized Small-Molecule Acceptors for High- Performance All-Polymer Solar Cells. Angew. Chem. Int. Ed. 2021, 60, 4422–4433.
- 18 Zhang, Z.; Wang, W.; Jiang, Y.; Wang, Y. X.; Wu, Y.; Lai, J. C.; Niu, S.; Xu, C.; Shih, C. C.; Wang, C.; Yan, H.; Galuska, L.; Prine, N.; Wu, H. C.; Zhong, D.; Chen, G.; Matsuhisa, N.; Zheng, Y.; Yu, Z.; Wang, Y.; Dauskardt, R.; Gu, X.; Tok, J. B.; Bao, Z. High-brightness all-polymer stretchable LED with charge-trapping dilution. Nature 2022, 603, 624–630.
- 19 Zhou, K.; Xian, K.; Ye, L. Morphology control in high-efficiency all polymer solar cells. InfoMat 2022, 4, 12270.
- 20 Yoon, S.; Park, S.; Park, S. H.; Nah, S.; Lee, S.; Lee, J.-W.; Ahn, H.; Yu, H.; Shin, E.-Y.; Kim, B. J.; Min, B. K.; Noh, J. H.; Son, H. J. High-performance scalable organic photovoltaics with high thickness tolerance from 1 cm2 to above 50 cm2. Joule 2022, 7, 1–17.
- 21 Sun, Y.; Ma, R.; Kan, Y.; Liu, T.; Zhou, K.; Liu, P.; Fang, J.; Chen, Y.; Ye, L.; Ma, C.; Yan, H.; Gao, K. Simultaneously Enhanced Efficiency and Mechanical Durability in Ternary Solar Cells Enabled by Low-Cost Incompletely Separated Fullerenes. Macromol. Rapid Commun. 2022, 2200139.
- 22 Xian, K.; Geng, Y.; Ye, L. The rise of polythiophene photovoltaics. Joule 2022, 6, 941–944.
- 23 Xie, C.; Jiang, X.; Zhu, Q.; Wang, D.; Xiao, C.; Liu, C.; Ma, W.; Chen, Q.; Li, W. Mechanical Robust Flexible Single-Component Organic Solar Cells. Small Methods 2021, 5, 2100481.
- 24 Chen, A. X.; Kleinschmidt, A. T.; Choudhary, K.; Lipomi, D. J. Beyond Stretchability: Strength, Toughness, and Elastic Range in Semiconducting Polymers. Chem. Mater. 2020, 32, 7582–7601.
- 25 Xu, Z.; Park, K. S.; Kwok, J. J.; Lin, O.; Patel, B. B.; Kafle, P.; Davies, D. W.; Chen, Q.; Diao, Y. Not All Aggregates Are Made the Same: Distinct Structures of Solution Aggregates Drastically Modulate Assembly Pathways, Morphology, and Electronic Properties of Conjugated Polymers. Adv. Mater. 2022, 34, 2203055.
- 26 Li, B.; Zhang, X.; Wu, Z.; Yang, J.; Liu, B.; Liao, Q.; Wang, J.; Feng, K.; Chen, R.; Woo, H. Y.; Ye, F.; Niu, L.; Guo, X.; Sun, H. Over 16% efficiency all-polymer solar cells by sequential deposition. Sci. China Chem. 2022, 65, 1157–1163.
- 27 Wang, Z.; Gao, K.; Kan, Y.; Zhang, M.; Qiu, C.; Zhu, L.; Zhao, Z.; Peng, X.; Feng, W.; Qian, Z.; Gu, X.; Jen, A. K.; Tang, B. Z.; Cao, Y.; Zhang, Y.; Liu, F. The coupling and competition of crystallization and phase separation, correlating thermodynamics and kinetics in OPV morphology and performances. Nat. Commun. 2021, 12, 332.
- 28 Gao, K.; Kan, Y.; Chen, X.; Liu, F.; Kan, B.; Nian, L.; Wan, X.; Chen, Y.; Peng, X.; Russell, T. P.; Cao, Y.; Jen, A. K. Low-Bandgap Porphyrins for Highly Efficient Organic Solar Cells: Materials, Morphology, and Applications. Adv. Mater. 2020, 32, 1906129.
- 29 Peng, F.; An, K.; Zhong, W.; Li, Z.; Ying, L.; Li, N.; Huang, Z.; Zhu, C.; Fan, B.; Huang, F.; Cao, Y. A Universal Fluorinated Polymer Acceptor Enables All-Polymer Solar Cells with >15% Efficiency. ACS Energy Lett. 2020, 5, 3702–3707.
- 30 Sun, H.; Liu, B.; Ma, Y.; Lee, J. W.; Yang, J.; Wang, J.; Li, Y.; Li, B.; Feng, K.; Shi, Y.; Zhang, B.; Han, D.; Meng, H.; Niu, L.; Kim, B. J.; Zheng, Q.; Guo, X. Regioregular Narrow-Bandgap n-Type Polymers with High Electron Mobility Enabling Highly Efficient All-Polymer Solar Cells. Adv. Mater. 2021, 33, 2102635.
- 31 Liu, T.; Yang, T.; Ma, R.; Zhan, L.; Luo, Z.; Zhang, G.; Li, Y.; Gao, K.; Xiao, Y.; Yu, J.; Zou, X.; Sun, H.; Zhang, M.; Dela Peña, T. A.; Xing, Z.; Liu, H.; Li, X.; Li, G.; Huang, J.; Duan, C.; Wong, K. S.; Lu, X.; Guo, X.; Gao, F.; Chen, H.; Huang, F.; Li, Y.; Li, Y.; Cao, Y.; Tang, B.; Yan, H. 16% efficiency all-polymer organic solar cells enabled by a finely tuned morphology via the design of ternary blend. Joule 2021, 5, 914–930.
- 32 Zhang, J.; Tan, C. H.; Zhang, K.; Jia, T.; Cui, Y.; Deng, W.; Liao, X.; Wu, H.; Xu, Q.; Huang, F.; Cao, Y. π-Extended Conjugated Polymer Acceptor Containing Thienylene-Vinylene-Thienylene Unit for High-Performance Thick-Film All-Polymer Solar Cells with Superior Long-Term Stability. Adv. Energy Mater. 2021, 11, 2102559.
- 33 Yang, T.; Yao, S.; Liu, T.; Huang, B.; Xiao, Y.; Liu, H.; Lu, X.; Zou, B. Tailoring the Morphology's Microevolution for Binary All-Polymer Solar Cells Processed by Aromatic Hydrocarbon Solvent with 16.22% Efficiency. ACS Appl Mater Interfaces 2022, 14, 29956–29963.
- 34
Song, J.; Li, Y.; Cai, Y.; Zhang, R.; Wang, S.; Xin, J.; Han, L.; Wei, D.; Ma, W.; Gao, F.; Sun, Y. Solid additive engineering enables high-efficiency and eco-friendly all-polymer solar cells. Matter 2022, 5, 1–13.
10.1016/j.matt.2021.12.008 Google Scholar
- 35 Jia, T.; Zhang, J.; Zhang, K.; Tang, H.; Dong, S.; Tan, C.-H.; Wang, X.; Huang, F. All-polymer solar cells with efficiency approaching 16% enabled using a dithieno[3',2':3,4;2”,3”:5,6]benzo[1,2-c][1,2,5]thiadiazole (fDTBT)-based polymer donor. J. Mater. Chem. A 2021, 9, 8975–8983.
- 36 Luo, Z.; Liu, T.; Ma, R.; Xiao, Y.; Zhan, L.; Zhang, G.; Sun, H.; Ni, F.; Chai, G.; Wang, J.; Zhong, C.; Zou, Y.; Guo, X.; Lu, X.; Chen, H.; Yan, H.; Yang, C. Precisely Controlling the Position of Bromine on the End Group Enables Well-Regular Polymer Acceptors for All-Polymer Solar Cells with Efficiencies over 15. Adv. Mater. 2020, 32, 2005942.
- 37 Yu, H.; Pan, M.; Sun, R.; Agunawela, I.; Zhang, J.; Li, Y.; Qi, Z.; Han, H.; Zou, X.; Zhou, W.; Chen, S.; Lai, J. Y. L.; Luo, S.; Luo, Z.; Zhao, D.; Lu, X.; Ade, H.; Huang, F.; Min, J.; Yan, H. Regio-Regular Polymer Acceptors Enabled by Determined Fluorination on End Groups for All-Polymer Solar Cells with 15.2 % Efficiency. Angew. Chem. Int. Ed. 2021, 60, 10137–10146.
- 38 Wang, J.; Cui, Y.; Xu, Y.; Xian, K.; Bi, P.; Chen, Z.; Zhou, K.; Ma, L.; Zhang, T.; Yang, Y.; Zu, Y.; Yao, H.; Hao, X.; Ye, L.; Hou, J. A New Polymer Donor Enables Binary All-Polymer Organic Photovoltaic Cells with 18% Efficiency and Excellent Mechanical Robustness. Adv. Mater. 2022, 34, 2205009.
- 39 Yin, H.; Yan, C.; Hu, H.; Ho, J. K. W.; Zhan, X.; Li, G.; So, S. K. Recent progress of all-polymer solar cells – From chemical structure and device physics to photovoltaic performance. Mater. Sci. Eng. R Rep. 2020, 140, 100542.
- 40 Ma, R.; Zhou, K.; Sun, Y.; Liu, T.; Kan, Y.; Xiao, Y.; Dela Peña, T. A.; Li, Y.; Zou, X.; Xing, Z.; Luo, Z.; Wong, K. S.; Lu, X.; Ye, L.; Yan, H.; Gao, K. Achieving high efficiency and well-kept ductility in ternary all-polymer organic photovoltaic blends thanks to two well miscible donors. Matter 2022, 5, 725–734.
- 41 Yang, X.; Gao, M.; Bi, Z.; Liu, Y.; Xian, K.; Peng, Z.; Qi, Q.; Li, S.; Song, J.; Ma, W.; Ye, L. Unraveling the Photovoltaic, Mechanical, and Microstructural Properties and Their Correlations in Simple Poly(3-pentylthiophene) Solar Cells. Macromol. Rapid Commun. 2022, 2200229.
- 42 Balar, N.; Rech, J. J.; Henry, R.; Ye, L.; Ade, H.; You, W.; O'Connor, B. T. The Importance of Entanglements in Optimizing the Mechanical and Electrical Performance of All-Polymer Solar Cells. Chem. Mater. 2019, 31, 5124–5132.
- 43 Gao, K.; Miao, J.; Xiao, L.; Deng, W.; Kan, Y.; Liang, T.; Wang, C.; Huang, F.; Peng, J.; Cao, Y.; Liu, F.; Russell, T. P.; Wu, H.; Peng, X. Multi-Length-Scale Morphologies Driven by Mixed Additives in Porphyrin-Based Organic Photovoltaics. Adv. Mater. 2016, 28, 4727–4233.
- 44 Fu, H.; Peng, Z.; Fan, Q.; Lin, F. R.; Qi, F.; Ran, Y.; Wu, Z.; Fan, B.; Jiang, K.; Woo, H. Y.; Lu, G.; Ade, H.; Jen, A. K. A Top-Down Strategy to Engineer ActiveLayer Morphology for Highly Efficient and Stable All-Polymer Solar Cells. Adv. Mater. 2022, 2202608.
- 45 Yu, H.; Wang, Y.; Kim, H. K.; Wu, X.; Li, Y.; Yao, Z.; Pan, M.; Zou, X.; Zhang, J.; Chen, S.; Zhao, D.; Huang, F.; Lu, X.; Zhu, Z.; Yan, H. A Vinylene-Linker-Based Polymer Acceptor Featuring a Coplanar and Rigid Molecular Conformation Enables High-Performance All-Polymer Solar Cells with Over 17% Efficiency. Adv. Mater. 2022, 34, 2200361.
- 46 Sun, R.; Wang, W.; Yu, H.; Chen, Z.; Xia, X.; Shen, H.; Guo, J.; Shi, M.; Zheng, Y.; Wu, Y.; Yang, W.; Wang, T.; Wu, Q.; Yang, Y.; Lu, X.; Xia, J.; Brabec, C. J.; Yan, H.; Li, Y.; Min, J. Achieving over 17% efficiency of ternary all-polymer solar cells with two well-compatible polymer acceptors. Joule 2021, 5, 1548–1565.
- 47 Zhou, K.; Xian, K.; Qi, Q.; Gao, M.; Peng, Z.; Liu, J.; Liu, Y.; Li, S.; Zhang, Y.; Geng, Y.; Ye, L. Unraveling the Correlations between Mechanical Properties, Miscibility, and Film Microstructure in All-Polymer Photovoltaic Cells. Adv. Funct. Mater. 2022, 32, 2201781.
- 48 Wang, W.; Wu, Q.; Sun, R.; Guo, J.; Wu, Y.; Shi, M.; Yang, W.; Li, H.; Min, J. Controlling Molecular Mass of Low-Band-Gap Polymer Acceptors for High-Performance All-Polymer Solar Cells. Joule 2020, 4, 1070–1086.
- 49 Yu, H.; Qi, Z.; Yu, J.; Xiao, Y.; Sun, R.; Luo, Z.; Cheung, A. M.H.; Zhang, J.; Sun, H.; Zhou, W.; Chen, S.; Guo, X.; Lu, X.; Gao, F.; Min, J.; Yan, H. Fluorinated End Group Enables High-Performance All-Polymer Solar Cells with Near-Infrared Absorption and Enhanced Device Efficiency over 14%. Adv. Energy Mater. 2020, 11, 2003171.
- 50 Wu, Q.; Wang, W.; Wang, T.; Sun, R.; Guo, J.; Wu, Y.; Jiao, X.; Brabec, C. J.; Li, Y.; Min, J. High-performance all-polymer solar cells with only 0.47 eV energy loss. Sci. China Chem. 2020, 63, 1449–1460.
- 51 Xian, K.; Zhang, S.; Xu, Y.; Liu, J.; Zhou, K.; Peng, Z.; Li, M.; Zhao, W.; Chen, Y.; Fei, Z.; Hou, J.; Geng, Y.; Ye, L. Refining Acceptor Aggregation in Nonfullerene Organic Solar Cells to Achieve High Efficiency and Superior Thermal Stability. Sci. China Chem. 2022, DOI: https://doi.org/10.1007/s11426-022-1394-y.
- 52 Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.-L.; Lau, T.-K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y.; Zou, Y. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 2019, 3, 1140–1151.
- 53 Li, S.; Li, C. Z.; Shi, M.; Chen, H. New Phase for Organic Solar Cell Research: Emergence of Y-Series Electron Acceptors and Their Perspectives. ACS Energy Lett. 2020, 5, 1554–1567.
- 54 Yu, H.; Luo, S.; Sun, R.; Angunawela, I.; Qi, Z.; Peng, Z.; Zhou, W.; Han, H.; Wei, R.; Pan, M.; Cheung, A. M.H.; Zhao, D.; Zhang, J.; Ade, H.; Min, J.; Yan, H. A Difluoro-Monobromo End Group Enables High- Performance Polymer Acceptor and Efficient All-Polymer Solar Cells Processable with Green Solvent under Ambient Condition. Adv. Funct. Mater. 2021, 31, 2100791.
- 55 Wang, G.; Feng, L. W.; Huang, W.; Mukherjee, S.; Chen, Y.; Shen, D.; Wang, B.; Strzalka, J.; Zheng, D.; Melkonyan, F. S.; Yan, J.; Stoddart, J. F.; Fabiano, S.; DeLongchamp, D. M.; Zhu, M.; Facchetti, A.; Marks, T. J. Mixed-flow design for microfluidic printing of two-component polymer semiconductor systems. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 17551–17557.
- 56 Wang, G.; Melkonyan, F. S.; Facchetti, A.; Marks, T. J. All-Polymer Solar Cells: Recent Progress, Challenges, and Prospects. Angew. Chem. Int. Ed. 2019, 58, 4129–4142.
- 57 Wu, Y.; Wu, Q.; Wang, W.; Sun, R.; Min, J. Highly Efficient All-Polymer Solar Cells Enabled by Random Ternary Copolymer Acceptors with High Tolerance on Molar Ratios. Solar RRL 2020, 4, 2000409.
- 58 Lee, C.; Lee, S.; Kim, G. U.; Lee, W.; Kim, B. J. Recent Advances, Design Guidelines, and Prospects of All-Polymer Solar Cells. Chem. Rev. 2019, 119, 8028–8086.
- 59 Yao, H.; Qian, D.; Zhang, H.; Qin, Y.; Xu, B.; Cui, Y.; Yu, R.; Gao, F.; Hou, J. Critical Role of Molecular Electrostatic Potential on Charge Generation in Organic Solar Cells. Chin. J. Chem. 2018, 36, 491–494.
- 60 Cui, Y.; Wang, Y.; Bergqvist, J.; Yao, H.; Xu, Y.; Gao, B.; Yang, C.; Zhang, S.; Inganäs, O.; Gao, F.; Hou, J. Wide-gap non-fullerene acceptor enabling high-performance organic photovoltaic cells for indoor applications. Nat Energy 2019, 4, 768–775.
- 61 Peng, Z.; Ye, L.; Ade, H. Understanding, quantifying, and controlling the molecular ordering of semiconducting polymers: from novices to experts and amorphous to perfect crystals. Mater. Horiz. 2022, 9, 577–606.
- 62 Xian, K.; Liu, Y.; Liu, J.; Yu, J.; Xing, Y.; Peng, Z.; Zhou, K.; Gao, M.; Zhao, W.; Lu, G.; Zhang, J.; Hou, J.; Geng, Y.; Ye, L. Delicate crystallinity control enables high-efficiency P3HT organic photovoltaic cells. J. Mater. Chem. A 2022, 10, 3418–3429.
- 63
Gao, M.; Liu, Y.; Xian, K.; Peng, Z.; Zhou, K.; Liu, J.; Li, S.; Xie, F.; Zhao, W.; Zhang, J.; Jiao, X.; Ye, L. Thermally stable poly(3-hexylthiophene): Nonfullerene solar cells with efficiency breaking 10%. Aggregate 2022, DOI: https://doi.org/10.1002/agt2.190.
10.1002/agt2.190 Google Scholar
- 64 Fan, B.; Zhong, W.; Ying, L.; Zhang, D.; Li, M.; Lin, Y.; Xia, R.; Liu, F.; Yip, H. L.; Li, N.; Ma, Y.; Brabec, C. J.; Huang, F.; Cao, Y. Surpassing the 10% efficiency milestone for 1-cm(2) all-polymer solar cells. Nat. Commun. 2019, 10, 4100.
- 65 Zheng, X.; Zuo, L.; Zhao, F.; Li, Y.; Chen, T.; Shan, S.; Yan, K.; Pan, Y.; Xu, B.; Li, C. Z.; Shi, M.; Hou, J.; Chen, H. High-Efficiency ITO-Free Organic Photovoltaics with Superior Flexibility and Upscalability. Adv. Mater. 2022, 34, 2200044.
- 66 Yang, Y.; Xu, B.; Hou, J. Solution-Processed Silver Nanowire as Flexible Transparent Electrodes in Organic Solar Cells. Chin. J. Chem. 2021, 39, 2315–2329.