Sky-Blue Aggregation-Induced Delayed Fluorescence Luminogens with High Horizontal Dipole Orientation for Efficient Organic Light-Emitting Diodes†
Ruishan Huang
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, Guangdong, 510640 China
‡ These authors contributed equally to this work.
† Dedicated to the Special Issue of Optoelectronic Functional Materials.
Search for more papers by this authorZuguo Yang
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, Guangdong, 510640 China
‡ These authors contributed equally to this work.
† Dedicated to the Special Issue of Optoelectronic Functional Materials.
Search for more papers by this authorHao Chen
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, Guangdong, 510640 China
Search for more papers by this authorHao Liu
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, Guangdong, 510640 China
Search for more papers by this authorBen Zhong Tang
School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172 China
Search for more papers by this authorCorresponding Author
Zujin Zhao
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, Guangdong, 510640 China
E-mail: [email protected]Search for more papers by this authorRuishan Huang
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, Guangdong, 510640 China
‡ These authors contributed equally to this work.
† Dedicated to the Special Issue of Optoelectronic Functional Materials.
Search for more papers by this authorZuguo Yang
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, Guangdong, 510640 China
‡ These authors contributed equally to this work.
† Dedicated to the Special Issue of Optoelectronic Functional Materials.
Search for more papers by this authorHao Chen
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, Guangdong, 510640 China
Search for more papers by this authorHao Liu
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, Guangdong, 510640 China
Search for more papers by this authorBen Zhong Tang
School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172 China
Search for more papers by this authorCorresponding Author
Zujin Zhao
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, Guangdong, 510640 China
E-mail: [email protected]Search for more papers by this authorComprehensive Summary
Efficient and stable blue luminescent organic materials are highly demanded in the field of organic light-emitting diodes (OLEDs) but still remain challenging. In this work, two new sky-blue luminescent molecules comprised of electron acceptor of benzophenone and electron donors of spiro[acridine-9,9'-fluorene] and carbazole are designed and synthesized, and their thermal stability, electrochemical behaviors, photophysical properties, carrier transport ability and electroluminescence performance are investigated. They exhibit distinct merits of aggregation-induced delayed fluorescence with high solid-state photoluminescence quantum yields, balanced bipolar carrier transport and high horizontal dipole ratios. Highly efficient OLEDs using both molecules as emitters are obtained, which radiate strong sky-blue light and provide outstanding external quantum efficiencies of up to 33.3% with small roll-offs.
Supporting Information
Filename | Description |
---|---|
cjoc202200543-sup-0001-Supinfo.pdfPDF document, 3.4 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Xiao, L. X.; Chen, Z. J.; Qu, B.; Luo, J. X.; Kong, S.; Gong, Q. H.; Kido, J. J. Recent Progresses on Materials for Electrophosphorescent Organic Light-Emitting Devices. Adv. Mater. 2011, 23, 926–952.
- 2 Tao, Y. T.; Yang, C. L.; Qin, J. G. Organic host materials for phosphorescent organic light-emitting diodes. Chem. Soc. Rev. 2011, 40, 2943–2970.
- 3 Yang, X. L.; Xu, X. B.; Zhou, G. J. Recent advances of the emitters for high performance deep-blue organic light-emitting diodes. J. Mater. Chem. C 2015, 3, 913–944.
- 4 Tang, C. W.; VanSlyke, S. A. Organic electroluminescent diodes. Appl. Phys. Lett. 1987, 51, 193–915.
- 5 Guo, J.; Zhao, Z.; Tang, B. Z. Purely Organic Materials with Aggregation-Induced Delayed Fluorescence for Efficient Nondoped OLEDs. Adv. Opt. Mater. 2018, 6, 1800264.
- 6 Mao, X. Y.; Xie, F. L.; Wang, X. H.; Wang, Q. S.; Qiu, Z. P.; Elsegood, M. R. J.; Bai, J.; Feng, X.; Redshaw, C.; Huo, Y. P.; Hu, J. Y.; Chen, Q. New Quinoxaline-Based Blue Emitters: Molecular Structures, Aggregation-Induced Enhanced Emission Characteristics and OLED Application. Chin. J. Chem. 2021, 39, 2154–2162.
- 7 Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 2012, 492, 234–238.
- 8 Hirata, S.; Sakai, Y.; Masui, K.; Tanaka, H.; Lee, S. Y.; Nomura, H.; Nakamura, N.; Yasumatsu, M.; Nakanotani, H.; Zhang, Q. S.; Shizu, K.; Miyazaki, H.; Adachi, C. Highly efficient blue electroluminescence based on thermally activated delayed fluorescence. Nat. Mater. 2015, 14, 330–336.
- 9 Goushi, K.; Yoshida, K.; Sato, K.; Adachi, C. Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion. Nat. Photonics 2012, 6, 253–258.
- 10 Wong, M. Y.; Zysman-Colman, E. Purely Organic Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes. Adv. Mater. 2017, 29, 1605444.
- 11 Cai, X.; Su, S. Marching Toward Highly Efficient, Pure-Blue, and Stable Thermally Activated Delayed Fluorescent Organic Light-Emitting Diodes. Adv. Funct. Mater. 2018, 28, 1802558.
- 12 Yang, H. Y.; Zhang, M.; Zhao, J. W.; Pu, C. P.; Lin, H.; Tao, S. L.; Zheng, C. J.; Zhang, X. H. Improving Efficiency of Red Thermally Activated Delayed Fluorescence Emitter by Introducing Quasi-Degenerate Orbital Distribution. Chin. J. Chem. 2022, 40, 911–917.
- 13 Cui, L. S.; Nomura, H.; Geng, Y.; Kim, J. U.; Nakanotani, H.; Adachi, C. Controlling Singlet-Triplet Energy Splitting for Deep-Blue Thermally Activated Delayed Fluorescence Emitters. Angew. Chem. Int. Ed. 2017, 56, 1571–1575.
- 14 Wei, X. F.; Li, Z. Y.; Hu, T. P.; Duan, R. H.; Liu, J. J.; Wang, R. F.; Liu, Y. W.; Hu, X. X.; Yi, Y. P.; Wang, P. F.; Wang, Y. Substitution Conformation Balances the Oscillator Strength and Singlet-Triplet Energy Gap for Highly Efficient D-A-D Thermally Activated Delayed Fluorescence Emitters. Adv. Opt. Mater. 2019, 7, 1801767.
- 15 Lee, Y.; Hong, J. I. High-Efficiency Thermally Activated Delayed Fluorescence Emitters with High Horizontal Orientation and Narrow Deep-Blue Emission. Adv. Opt. Mater. 2021, 9, 2100406.
- 16 Furue, R.; Nishimoto, T.; Park, I. S.; Lee, J.; Yasuda, T. Aggregation-Induced Delayed Fluorescence Based on Donor/Acceptor-Tethered Janus Carborane Triads: Unique Photophysical Properties of Nondoped OLEDs. Angew. Chem. Int. Ed. 2016, 55, 7171–7175.
- 17 Xiang, Y. P.; Li, P.; Gong, S. L.; Huang, Y. H.; Wang, C. Y.; Zhong, C.; Zeng, W. X.; Chen, Z. X.; Lee, W. K.; Yin, X. J.; Wu, C. C.; Yang, C. L. Acceptor plane expansion enhances horizontal orientation of thermally activated delayed fluorescence emitters. Sci. Adv. 2020, 6, eaba7855.
- 18 Chung, W. J.; Lee, J. Y. Highly efficient and stable blue organic light-emitting diodes through the selective quenching of long-living triplet exciton of a thermally activated delayed fluorescence emitter. J. Mater. Chem. C 2021, 9, 7458–7464.
- 19 Luo, J. D.; Xie, Z. L.; Lam, J. W. Y.; Cheng, L.; Chen, H. Y.; Qiu, C. F.; Kwok, H. S.; Zhan, X. W.; Liu, Y. Q.; Zhu, D. B.; Tang, B. Z. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 1740–1741.
- 20 Zhao, Z.; He, B.; Tang, B. Z. Aggregation-induced emission of siloles. Chem. Sci. 2015, 6, 5347–5365.
- 21 Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Aggregation-Induced Emission: Together We Shine, United We Soar! Chem. Rev. 2015, 115, 11718–11940.
- 22 Shen, P. C.; Zhuang, Z. Y.; Zhao, Z. J.; Tang, B. Z. AIEgens based on main group heterocycles. J. Mater. Chem. C 2018, 6, 11835–11852.
- 23 Huang, J.; Nie, H.; Zeng, J.; Zhuang, Z.; Gan, S.; Cai, Y.; Guo, J.; Su, S.; Zhao, Z.; Tang, B. Z. Highly Efficient Nondoped OLEDs with Negligible Efficiency Roll-Off Fabricated from Aggregation-Induced Delayed Fluorescence Luminogens. Angew. Chem. Int. Ed. 2017, 56, 12971–12976.
- 24 Chen, X. K.; Bakr, B. W.; Auffray, M.; Tsuchiya, Y.; Sherrill, C. D.; Adachi, C.; Bredas, J. L. Intramolecular Noncovalent Interactions Facilitate Thermally Activated Delayed Fluorescence (TADF). J. Phys. Chem. Lett. 2019, 10, 3260–3268.
- 25 Ma, H. L.; Peng, Q.; An, Z. F.; Huang, W.; Shuai, Z. G. Efficient and Long-Lived Room-Temperature Organic Phosphorescence: Theoretical Descriptors for Molecular Designs. J. Am. Chem. Soc. 2019, 141, 1010–1015.
- 26 Li, W.; Li, B. B.; Cai, X. Y.; Gan, L.; Xu, Z. D.; Li, W. Q.; Liu, K. K.; Chen, D. C.; Su, S. J. Tri-Spiral Donor for High Efficiency and Versatile Blue Thermally Activated Delayed Fluorescence Materials. Angew. Chem. Int. Ed. 2019, 58, 11301–11305.
- 27 Li, W.; Li, W. Q.; Gan, L.; Li, M. K.; Zheng, N.; Ning, C. Y.; Chen, D. C.; Wu, Y. C.; Su, S. J. J-Aggregation Enhances the Electroluminescence Performance of a Sky-Blue Thermally Activated Delayed-Fluorescence Emitter in Nondoped Organic Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2020, 12, 2717–2723.
- 28 Li, W.; Li, M. K.; Li, W. Q.; Xu, Z. D.; Gan, L.; Liu, K. K.; Zheng, N.; Ning, C. Y.; Chen, D. C.; Wu, Y. C.; Su, S. J. Spiral Donor Design Strategy for Blue Thermally Activated Delayed Fluorescence Emitters. ACS Appl. Mater. Interfaces 2021, 13, 5302–5311.
- 29 Huang, J.; Xu, Z.; Cai, Z. Y.; Guo, J. J.; Guo, J. L.; Shen, P. C.; Wang, Z. M.; Zhao, Z. J.; Ma, D. G.; Tang, B. Z. Robust luminescent small molecules with aggregation-induced delayed fluorescence for efficient solution-processed OLEDs. J. Mater. Chem. C 2019, 7, 330–339.
- 30 Guo, J.; Li, X.; Nie, H.; Luo, W.; Gan, S.; Hu, S.; Hu, R.; Qin, A.; Zhao, Z.; Su, S.; Tang, B. Achieving High-Performance Nondoped OLEDs with Extremely Small Efficiency Roll-Off by Combining Aggregation-Induced Emission and Thermally Activated Delayed Fluorescence. Adv. Funct. Mater. 2017, 27, 1606458.
- 31 Zhang, D. D.; Cai, M. H.; Zhang, Y. G.; Zhang, D. Q.; Duan, L. Sterically shielded blue thermally activated delayed fluorescence emitters with improved efficiency and stability. Mater. Horiz. 2016, 3, 145–151.
- 32 Liu, H.; Zeng, J.; Guo, J.; Nie, H.; Zhao, Z.; Tang, B. Z. High-Performance Non-doped OLEDs with Nearly 100% Exciton Use and Negligible Efficiency Roll-Off. Angew. Chem. Int. Ed. 2018, 57, 9290–9294.
- 33 Fu, Y.; Liu, H.; Yang, D.; Ma, D.; Zhao, Z.; Tang, B. Z. Boosting external quantum efficiency to 38.6% of sky-blue delayed fluorescence molecules by optimizing horizontal dipole orientation. Sci. Adv. 2021, 7, eabj2504.
- 34 Kim, K. H.; Kim, J. J. Origin and Control of Orientation of Phosphorescent and TADF Dyes for High-Efficiency OLEDs. Adv. Mater. 2018, 30, 1705600.
- 35 Yokoyama, D. Molecular orientation in small-molecule organic light-emitting diodes. J. Mater. Chem. 2011, 21, 19187–19202.
- 36 Lin, T. A.; Chatterjee, T.; Tsai, W. L.; Lee, W. K.; Wu, M. J.; Jiao, M.; Pan, K. C.; Yi, C. L.; Chung, C. L.; Wong, K. T.; Wu, C. C. Sky-Blue Organic Light Emitting Diode with 37% External Quantum Efficiency Using Thermally Activated Delayed Fluorescence from Spiroacridine-Triazine Hybrid. Adv. Mater. 2016, 28, 6976–6983.
- 37 Zhang, D. D.; Song, X. Z.; Cai, M. H.; Duan, L. Blocking Energy-Loss Pathways for Ideal Fluorescent Organic Light-Emitting Diodes with Thermally Activated Delayed Fluorescent Sensitizers. Adv. Mater. 2018, 30, 1705250.
- 38 Chen, J.; Zeng, J.; Zhu, X.; Guo, J.; Zhao, Z.; Tang, B. Z. Versatile Aggregation-Enhanced Delayed Fluorescence Luminogens Functioning as Emitters and Hosts for High-Performance Organic Light-Emitting Diodes. CCS Chem. 2021, 3, 230–240.
- 39 Chen, J.; Wu, X.; Liu, H.; Qiu, N.; Liu, Z.; Yang, D.; Ma, D.; Tang, B. Z.; Zhao, Z. Towards Efficient Blue Delayed Fluorescence Molecules by Modulating Torsion Angle Between Electron Donor and Acceptor. CCS Chem. 2022, DOI: 10.31635/ccschem.022.202202196.
- 40 Chen, H.; Liu, H.; Shen, P.; Zeng, J.; Jiang, R.; Fu, Y.; Zhao, Z.; Tang, B. Z. Efficient Sky-Blue Bipolar Delayed Fluorescence Luminogen for High-Performance Single Emissive Layer WOLEDs. Adv. Optical Mater. 2021, 9, 2002019.
- 41 Zeng, J.; Guo, J.; Liu, H.; Zhao, Z.; Tang, B. Z. A Multifunctional Bipolar Luminogen with Delayed Fluorescence for High-Performance Monochromatic and Color-Stable Warm-White OLEDs. Adv. Funct. Mater. 2020, 30, 2000019.