Design and Application of m-Hydroxybenzyl Alcohols in Regioselective (3 + 3) Cycloadditions of 2-Indolymethanols†
Yi-Cheng Shi
Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116 China
Search for more papers by this authorXin-Yu Yan
Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116 China
Search for more papers by this authorPing Wu
Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116 China
Search for more papers by this authorSong Jiang
Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116 China
Search for more papers by this authorRan Xu
Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116 China
Search for more papers by this authorCorresponding Author
Wei Tan
Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Feng Shi
Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116 China
School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorYi-Cheng Shi
Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116 China
Search for more papers by this authorXin-Yu Yan
Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116 China
Search for more papers by this authorPing Wu
Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116 China
Search for more papers by this authorSong Jiang
Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116 China
Search for more papers by this authorRan Xu
Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116 China
Search for more papers by this authorCorresponding Author
Wei Tan
Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Feng Shi
Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116 China
School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this author+These authors contributed equally to this work.
† Dedicated to the Special Issue of Emerging Investigators in 2022.
Comprehensive Summary
A new class of m-hydroxybenzyl alcohols has been designed as competent three-carbon building blocks and achieved their application in 2-indolylmethanol-involved regioselective (3 + 3) cycloadditions under the catalysis of Brønsted acids. By this appoach, a series of indole-fused six-membered cycloadducts have been synthesized in overall good yields (up to 98%) with excellent regioselectivity (all >95: 5 rr), thus affording a powerful method for the construction of indole-fused six-membered rings. Moreover, a catalytic asymmetric version of this (3 + 3) cycloaddition has been preliminarily investigated, which revealed the potential of the reaction for constructing chiral indole-fused six-membered rings in an enantioselective manner. This work not only has accomplished the first design of m-hydroxybenzyl alcohols as competent reactants, but also represents the first application of m-hydroxybenzyl alcohols as three-carbon building blocks in cycloadditions. In addition, this work provides a good example for regioselective and C3-nucleophilic (3 + 3) cycloadditions of 2-indolylmethanols, which will substantially enrich the chemistry of 2-indolylmethanols.
Supporting Information
Filename | Description |
---|---|
cjoc202200503-sup-0001-Supinfo.pdfPDF document, 4.9 MB |
Appendix S1 Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1For reviews: (a) Kochanowska-Karamyan, A. J.; Hamann, M. T. Marine Indole Alkaloids: Potential New Drug Leads for the Control of Depression and Anxiety. Chem. Rev. 2010, 110, 4489–4497; (b) Wan, Y.; Li, Y.; Yan, C.; Yan, M.; Tang, Z. Indole: A Privileged Scaffold for the Design of Anti-Cancer Agents. Eur. J. Med. Chem. 2019, 183, 111691.
- 2(a) Feng, Y.; Majireck, M. M.; Weinreb, S. M. Total Synthesis of the Unusual Monoterpenoid Indole Alkaloid (±)-Alstilobanine A. Angew. Chem. Int. Ed. 2012, 51, 12846–12849; (b) Koyama, K.; Hirasawa, Y.; Zaima, K.; Hoe, T. C.; Chan, K.-L.; Morita, H. Alstilobanines A-E, New Indole Alkaloids from Alstonia Angustiloba. Bioorg. Med. Chem. 2008, 16, 6483–6488; (c) Park, E. J.; Choi, S. A.; Min, K. A.; Jee, J.-P.; Jin, S. G.; Cho, K. H. Development of Alectinib-Suspended SNEDDS for Enhanced Solubility and Dissolution. Pharmaceutics 2022, 14, 1694; (d) Qin, J.; Sun, X.; Ma, Y.; Cheng, Y.; Ma, Q.; Jing, W.; Qu, S.; Liu, L. Design, Synthesis and Biological Evaluation of Novel 1,3,4,9-Tetrahydropyrano[3,4-b]indoles as Potential Treatment of Triple Negative Breast Cancer by Suppressing PI3K/AKT/mTOR Pathway. Bioorg. Med. Chem. 2022, 55, 116594; (e) Yang, Y.; Huang, Y.; Song, H.; Liu, Y.; Wang, L.; Wang, Q. Skeletal Modifications of β-Carboline Alkaloids and Their Antiviral Activity Profile. Mol. Divers. 2016, 20, 829–835.
- 3For recent reviews: (a) Zhang, Y.-C.; Jiang, F.; Shi, F. Organocatalytic Asymmetric Synthesis of Indole-Based Chiral Heterocycles: Strategies, Reactions, and Outreach. Acc. Chem. Res. 2020, 53, 425–446; (b) Sheng, F.-T.; Wang, J.-Y.; Tan, W.; Zhang, Y.-C.; Shi, F. Progresses in Organocatalytic Asymmetric Dearomatization Reactions of Indole Derivatives. Org. Chem. Front. 2020, 7, 3967–3998; (c) Tu, M.-S.; Chen, K.-W.; Wu, P.; Zhang, Y.-C.; Liu, X.-Q.; Shi, F. Advances in Organocatalytic Asymmetric Reactions of Vinylindoles: Powerful Access to Enantioenriched Indole Derivatives. Org. Chem. Front. 2021, 8, 2643–2672.
- 4For reviews: (a) Mei, G.-J.; Shi, F. Indolylmethanols as Reactants in Catalytic Asymmetric Reactions. J. Org. Chem. 2017, 82, 7695–7707;
(b) Petrini, M. New Perspectives in the Indole Ring Functionalization Using 2-Indolylmethanols. Adv. Synth. Catal. 2020, 362, 1214–1232;
(c) Zhang, H.-H.; Shi, F. Advances in Catalytic Asymmetric Reactions Using 2-Indolylmethanols as Platform Molecules. Chin. J. Org. Chem. 2022, 42, DOI: 10.6023/cjoc202203018; For highlights: (d) Tan, B. Design and Catalytic Asymmetric Construction of Axially Chiral Aryl-Alkene-Indole Frameworks. Chin. J. Org. Chem. 2020, 40, 1404–1405;
(e) Tan, W.; Shi, F. A Breakthrough in 2-Indolylmethanol-Involved Organocatalytic Asymmetric Reactions. Chem. Synth. 2022, 2, 11.
10.20517/cs.2022.14 Google Scholar
- 5For examples of C3-substituted 2-indolylmethanols: (a) Bera, K.; Schneider, C. Brønsted Acid Catalyzed [3+2]-Cycloaddition of 2-Vinylindoles with in situ Generated 2-Methide-2H-indoles: Highly Enantioselective Synthesis of Pyrrolo[1,2-a]indoles. Chem. - Eur. J. 2016, 22, 7074–7078; (b) Bera, K.; Schneider, C. Brønsted Acid Catalyzed [3+2]- Cycloaddition of Cyclic Enamides with in Situ Generated 2-Methide- 2H-indoles: Enantioselective Synthesis of Indolo[1,2-a]indoles. Org. Lett. 2016, 18, 5660–5663; (c) Göricke, F.; Schneider, C. Palladium- Catalyzed, Enantioselective (3+2)-Cycloannulation of β-Keto Esters with Alkylidene 2H-Indoles toward Complex Indole-Based Heterocycles. Org. Lett. 2020, 22, 6101–6106; (d) Li, X.; Duan, M.; Deng, Z.; Shao, Q.; Chen, M.; Zhu, G.; Houk, K. N.; Sun, J. Catalytic Enantioselective Synthesis of Chiral Tetraarylmethanes. Nat. Catal. 2020, 3, 1010–1019; (e) Li, X.; Sun, J. Organocatalytic Enantioselective Synthesis of Chiral Allenes: Remote Asymmetric 1,8-Addition of Indole Imine Methides. Angew. Chem. Int. Ed. 2020, 59, 17049–17054; (f) Mao Y.; Lu, Y.; Li, T.; Wu, Q.; Tan, W.; Shi, F. Brønsted Acid-Catalyzed Substitution Reactions of 2-Indolyl-Methanols with Tryptophols: Chemoselective Synthesis of 2,2'-Bisindolylmethanes. Chin. J. Org. Chem. 2020, 40, 3895–3907; (g) Wang, C.-S.; Li, T.-Z.; Liu, S.-J.; Zhang, Y.-C.; Deng, S.; Jiao, Y.; Shi, F. Axially Chiral Aryl-Alkene- Indole Framework: A Nascent Member of the Atropisomeric Family and Its Catalytic Asymmetric Construction. Chin. J. Chem. 2020, 38, 543–552; (h) Loui, H. J.; Suneja, A.; Schneider, C. Cooperative Rh/Chiral Phosphoric Acid Catalysis toward the Highly Stereoselective (3+3)-Cycloannulation of Carbonyl Ylides and Indolyl-2- Methides. Org. Lett. 2021, 23, 2578–2583; (i) Li, X.; Duan, M.; Yu, P.; Houk, K. N.; Sun, J. Organocatalytic Enantioselective Dearomatization of Thiophenes by 1,10-Conjugate Addition of Indole Imine Methides. Nat. Commun. 2021, 12, 4881; (j) Wang, J.-Y.; Sun, M.; Yu, X.-Y.; Zhang, Y.-C.; Tan, W.; Shi, F. Atroposelective Construction of Axially Chiral Alkene-Indole Scaffolds via Catalytic Enantioselective Addition Reaction of 3-Alkynyl-2-indolylmethanols. Chin. J. Chem. 2021, 39, 2163–2171.
- 6For a theoretical investigation: Deng, S.; Qu, C.; Jiao, Y.; Liu, W.; Shi, F. Insights into 2-Indolylmethanol-Involved Cycloadditions: Origins of Regioselectivity and Enantioselectivity. J. Org. Chem. 2020, 85, 11641−11653.
- 7For examples of substitutions: (a) Li, C.; Zhang, H.-H.; Fan, T.; Shen, Y.; Wu, Q.; Shi, F. Brønsted Acid-Catalyzed Regioselective Reactions of 2-Indolylmethanols with Cyclic Enaminone and Anhydride Leading to C3-Functionalized Indole Derivatives. Org. Biomol. Chem. 2016, 14, 6932–6936; (b) Zhang, H.-H.; Wang, C.-S.; Li, C.; Mei, G.-J.; Li, Y.; Shi, F. Design and Enantioselective Construction of Axially Chiral Naphthyl-Indole Skeletons. Angew. Chem. Int. Ed. 2017, 56, 116–121; (c) Zhu, Z.-Q.; Shen, Y.; Liu, J.-X.; Tao, J.-Y.; Shi, F. Enantioselective Direct α-Arylation of Pyrazol-5-ones with 2-Indolylmethanols via Organo- Metal Cooperative Catalysis. Org. Lett. 2017, 19, 1542–1545; (d) Xu, M.-M.; Wang, H.-Q.; Mao, Y.-J.; Mei, G.-J.; Wang, S.-L.; Shi, F. Cooperative Catalysis-Enabled Asymmetric α-Arylation of Aldehydes Using 2-Indolylmethanols as Arylation Reagents. J. Org. Chem. 2018, 83, 5027–5034; (e) Sheng, F.-T.; Yang, S.; Wu, S.-F.; Zhang, Y.-C.; Shi, F. Catalytic Asymmetric Synthesis of Axially Chiral 3,3'-Bisindoles by Direct Coupling of Indole Ring. Chin. J. Chem. 2022, 40, 2151–2160; (f) Han, Z.; Zhuang, H.; Tang, L.; Zang, Y.; Guo, W.; Huang, H.; Sun, J. Catalytic Asymmetric Allylic Substitution/Isomerization with Central Chirality Transposition. Org. Lett. 2022, 24, 4246–4251.
- 8For examples of (3+2) cycloadditions: (a) Zhu, Z.-Q.; Shen, Y.; Sun, X.-X.; Tao, J.-Y.; Liu, J.-X.; Shi, F. Catalytic Asymmetric [3+2] Cycloadditions of C-3 Unsubstituted 2-Indolylmethanols: Regio-, Diastereo- and Enantioselective Construction of the Cyclopenta[b]indole Framework. Adv. Synth. Catal. 2016, 358, 3797–3808; (b) Xu, M.-M.; Wang, H.-Q.; Wan, Y.; Wang, S.-L.; Shi, F. Enantioselective Construction of Cyclopenta[b]indole Scaffolds via the Catalytic Asymmetric [3+2] Cycloaddition of 2-Indolylmethanols with p-Hydroxystyrenes. J. Org. Chem. 2017, 82, 10226–10233; (c) Mao, J.; Zhang, H.; Ding, X.-F.; Luo, X.; Deng, W.-P.; Synergistic Catalysis for Asymmetric [3+2] Cycloadditions of 2-Indolylmethanols with α,β-Unsaturated Aldehydes. J. Org. Chem. 2019, 84, 11186–11194; (d) Yang, S.; Wang, H.-Q.; Gao, J.-N.; Tan, W.-X.; Zhang, Y.-C.; Shi, F. Lewis Acid-Catalyzed (3+2) Cycloaddition of 2-Indolylmethanol with β,γ-Unsaturated α-Ketoesters. Eur. J. Org. Chem. 2022, DOI:https://doi.org/10.1002/ejoc.202200878.
- 9For examples of (4+3) cycloadditions: (a) Sun, M.; Ma, C.; Zhou, S.-J.; Lou, S.-F.; Xiao, J.; Jiao, Y.; Shi, F. Catalytic Asymmetric (4+3) Cyclizations of in Situ Generated ortho-Quinone Methides with 2-Indolylmethanols. Angew. Chem. Int. Ed. 2019, 58, 8703–8708; (b) Zhou, S.-J.; Sun, M.; Wang, J.-Y.; Yu, X.-Y.; Lu, H.; Zhang, Y.-C.; Shi, F. Metal- Catalyzed Regiospecific (4+3) Cyclization of 2-Indolylmethanols with ortho-Quinone Methides. J. Org. Chem. 2020, 2020, 4301–4308; (c) Ouyang, J.; Maji, R.; Leutzsch, M.; Mitschke, B.; List, B. Design of an Organocatalytic Asymmetric (4+3) Cycloaddition of 2-Indolylalcohols with Dienolsilanes. J. Am. Chem. Soc. 2022, 144, 8460–8466.
- 10For examples of (3+3) cycloadditions: (a) Sun, X.-X.; Zhang, H.-H.; Li, G.-H.; He, Y.-Y.; Shi, F. Catalytic Enantioselective and Regioselective [3+3] Cycloadditions Using 2-Indolylmethanols as 3C Building Blocks. Chem. - Eur. J. 2016, 22, 17526–17532; (b) Zhu, Z.-Q.; Yu, L.; Sun, M.; Mei, G.-J.; Shi, F. Regioselective [3+3] Cyclization of 2-Indolymethanols with Vinylcyclopropanes via Metal Catalysis. Adv. Synth. Catal. 2018, 360, 3109–3116; (c) Li, T.-Z.; Liu, S.-J.; Sun, Y.-W.; Deng, S.; Tan, W.; Jiao, Y.; Zhang, Y.-C.; Shi, F. Regio- and Enantioselective (3+3) Cycloaddition of Nitrones with 2-Indolylmethanols Enabled by Cooperative Organocatalysis. Angew. Chem. Int. Ed. 2021, 60, 2355–2363.
- 11For some reviews: (a) Water, R. W. V. D.; Pettus, T. R. R. Tetrahedron 2002, 58, 5367–5405;
(b) Pathak, T. P.; Sigman, M. S. Applications of ortho-Quinone Methide Intermediates in Catalysis and Asymmetric Synthesis. J. Org. Chem. 2011, 76, 9210–9215;
(c) Willis, N. J.; Bray, C. D. ortho-Quinone Methides in Natural Product Synthesis. Chem. - Eur. J. 2012, 18, 9160–9173;
(d) Bai, W.-J.; David, J. G.; Feng, Z.-G.; Weaver, M. G.; Wu, K.-L.; Pettus, T. R. R. The Domestication of ortho-Quinone Methides. Acc. Chem. Res. 2014, 47, 3655–3664;
(e) Singh, M. S.; Nagaraju, A.; Anand, N.; Chowdhury, S. ortho-Quinone Methide (o-QM): A Highly Reactive, Ephemeral and Versatile Intermediate in Organic Synthesis. RSC Adv. 2014, 4, 55924–55959;
(f) Wang, Z.; Sun, J. Recent Advances in Catalytic Asymmetric Reactions of o-Quinone Methides. Synthesis 2015, 47, 3629–3644;
(g) Jaworski, A. A.; Scheidt, K. A. Emerging Roles of in Situ Generated Quinone Methides in Metal-Free Catalysis. J. Org. Chem. 2016, 81, 10145–10153;
(h) Yang, B.; Gao, S. Recent Advances in the Application of Diels–Alder Reactions Involving o-Quinodimethanes, Aza-o-Quinone Methides and o-Quinone Methides in Natural Product Total Synthesis. Chem. Soc. Rev. 2018, 47, 7926–7953;
(i) Li, X.; Li, Z.; Sun, J. Quinone Methides and Indole Imine Methides as Intermediates in Enantioselective Catalysis. Nat. Synth. 2022, 1, 426–438.
10.1038/s44160-022-00072-x Google Scholar
- 12For some early examples: (a) Yu, Z.; Liu, X.; Dong, Z.; Xie, M.; Feng, X. An N,N′-Dioxide/In(OTf)3 Catalyst for the Asymmetric Hetero-Diels–Alder Reaction Between Danishefsky's Dienes and Aldehydes: Application in the Total Synthesis of Triketide. Angew. Chem. Int. Ed. 2008, 47, 1308–1311; (b) Alden-Danforth, E.; Scerba, M. T.; Lectka, T. Asymmetric Cycloadditions of o-Quinone Methides Employing Chiral Ammonium Fluoride Precatalysts. Org. Lett. 2008, 10, 4951–4953; (c) Lv, H.; You, L.; Ye, S. Enantioselective Synthesis of Dihydrocoumarins via N-Heterocyclic Carbene-Catalyzed Cycloaddition of Ketenes and o-Quinone Methides. Adv. Synth. Catal. 2009, 351, 2822–2826; (d) Luan, Y.; Schaus, S. E. Enantioselective Addition of Boronates to o-Quinone Methides Catalyzed by Chiral Biphenols. J. Am. Chem. Soc. 2012, 134, 19965–19968; (e) Izquierdo, J.; Orue, A.; Scheidt, K. A. A Dual Lewis Base Activation Strategy for Enantioselective Carbene- Catalyzed Annulations. J. Am. Chem. Soc. 2013, 135, 10634–10637; (f) Lv, H.; Jia, W.-Q.; Sun, L.-H.; Ye, S. N-Heterocyclic Carbene Catalyzed [4+3] Annulation of Enals and o-Quinone Methides: Highly Enantioselective Synthesis of Benzo-ε-Lactones. Angew. Chem. Int. Ed. 2013, 52, 8607–8610; (g) El-Sepelgy, O.; Haseloff, S.; Alamsetti, S. K.; Schneider, C. Brønsted Acid Catalyzed, Conjugate Addition of β-Dicarbonyls to In Situ Generated ortho-Quinone Methides-Enantioselective Synthesis of 4-Aryl-4H-Chromenes. Angew. Chem. Int. Ed. 2014, 53, 7923–7927; (h) Hsiao, C.-C.; Liao, H.-H.; Rueping, M. Enantio- and Diastereoselective Access to Distant Stereocenters Embedded within Tetrahydroxanthenes: Utilizing ortho-Quinone Methides as Reactive Intermediates in Asymmetric Brønsted Acid Catalysis. Angew. Chem. Int. Ed. 2014, 53, 13258–13263; (i) Zhao, J.-J.; Sun, S.-B.; He, S.-H.; Wu, Q.; Shi, F. Catalytic Asymmetric Inverse-Electron- Demand Oxa-Diels-Alder Reaction of In Situ Generated ortho-Quinone Methides with 3-Methyl-2-Vinylindoles. Angew. Chem. Int. Ed. 2015, 54, 5460–5464.
- 13For some recent examples: (a) Zhang, J.; Lin, L.; He, C.; Xiong, Q.; Liu, X.; Feng, X. A Chiral Scandium-Complex-Catalyzed Asymmetric Inverse-Electron-Demand Oxa-Diels–Alder Reaction of o-Quinone Methides with Fulvenes. Chem. Commun. 2018, 54, 74–77;
(b) Göricke, F.; Schneider, C. Palladium-Catalyzed Enantioselective Addition of Chiral Metal Enolates to In Situ Generated ortho-Quinone Methides. Angew. Chem. Int. Ed. 2018, 57, 14736–14741;
(c) Jiang, F.; Chen, K.-W.; Wu, P.; Zhang, Y.-C.; Jiao, Y.; Shi, F. A Strategy for Synthesizing Axially Chiral Naphthyl-Indoles: Catalytic Asymmetric Addition Reactions of Racemic Substrates. Angew. Chem. Int. Ed. 2019, 58, 15104–15110;
(d) Peng, L.; Li, K.; Xie, C.; Li, S.; Xu, D.; Qin, W.; Yan, H. Organocatalytic Asymmetric Annulation of ortho-Alkynylanilines: Synthesis of Axially Chiral Naphthyl-C2-Indoles. Angew. Chem. Int. Ed. 2019, 58, 17199–17204;
(e) Suneja, A.; Loui, H. J.; Schneider, C. Cooperative Catalysis for the Highly Diastereo- and Enantioselective [4+3]-Cycloannulation of ortho-Quinone Methides and Carbonyl Ylides. Angew. Chem. Int. Ed. 2020, 59, 5536–5540;
(f) An, X.-T.; Du, J.-Y.; Jia, Z.-L.; Zhang, Q.; Yu, K.-Y.; Zhang, Y.-Z.; Zhao, X.-H.; Fang, R.; Fan, C.-A. Asymmetric Catalytic [4+5] Annulation of ortho-Quinone Methides with Vinylethylene Carbonates and its Extension to Stereoselective Tandem Rearrangement. Chem. - Eur. J. 2020, 26, 3803–3809;
(g) Xu, D.; Huang, S.; Hu, F.; Peng, L.; Jia, S.; Mao, H.; Gong, X.; Li, F.; Qin, W.; Yan, H. Diversity-Oriented Enantioselective Construction of Atropisomeric Heterobiaryls and N-Aryl Indoles via Vinylidene ortho-Quinone Methides. CCS Chem. 2021, 3, 2680–2691;
10.31635/ccschem.021.202101154 Google Scholar(h) Bai, L.; Luo, X.; Ge, Y.; Wang, H.; Liu, J.; Wang, Y.; Luan, X. Catalytic Asymmetric [4+1] Spiroannulation of α-Bromo-β-Naphthols with Azoalkenes by an Electrophilic Dearomatization/SRN1-Debromination Approach, CCS Chem. 2021, 3, 1155–1165;10.31635/ccschem.021.202100831 Google Scholar(i) Liu, H.; Li, K.; Huang, S.; Yan, H. An Isolable Vinylidene ortho-Quinone Methide: Synthesis, Structure and Reactivity. Angew. Chem. Int. Ed. 2022, 61, e202117063.
- 14For recent reviews: (a) Li, W.; Xu, X.; Zhang, P.; Li, P. Recent Advances in the Catalytic Enantioselective Reactions of para-Quinone Methides. Chem. Asian J. 2018, 13, 2350–2359; (b) Wang, J.-Y.; Hao, W.-J.; Tua, S.-J.; Jiang, B. Org. Chem. Front. 2020, 7, 1743–1778; (c) Lima, C. G. S.; Pauli, F. P.; Costa, D. C. S.; Souza, A. S.; Forezi, L. S. M.; Ferreira, V. F.; Silva, F. C. para-Quinone Methides as Acceptors in 1,6-Nucleophilic Conjugate Addition Reactions for the Synthesis of Structurally Diverse Molecules. Eur. J. Org. Chem. 2020, 2022, 2650–2692.
- 15For early examples: (a) Chu, W.-D.; Zhang, L.-F.; Bao, X.; Zhao, X.-H.; Zeng, C.; Du, J.-Y.; Zhang, G.-B.; Wang, F.-X.; Ma, X.-Y.; Fan, C.-A. Asymmetric Catalytic 1,6-Conjugate Addition/Aromatization of para-Quinone Methides: Enantioselective Introduction of Functionalized Diarylmethine Stereogenic Centers. Angew. Chem. Int. Ed. 2013, 52, 9229–9233; (b) Caruana, L.; Kniep, F.; Johansen, T. K.; Poulsen, P. H.; Jørgensen, K. A. A New Organocatalytic Concept for Asymmetric α-Alkylation of Aldehydes. J. Am. Chem. Soc. 2014, 136, 15929–15932; (c) Wang, Z.; Wong, Y. F.; Sun, J. Catalytic Asymmetric 1,6-Conjugate Addition of para-Quinone Methides: Formation of All-Carbon Quaternary Stereocenters. Angew. Chem. Int. Ed. 2015, 54, 13711–13714; (d) Lou, Y.; Cao, P.; Jia, T.; Zhang, Y.; Wang, M.; Liao, J. Copper-Catalyzed Enantioselective 1,6-Boration of para-Quinone Methides and Efficient Transformation of gem-Diarylmethine Boronates to Triarylmethanes. Angew. Chem. Int. Ed. 2015, 54, 12134–12138.
- 16For recent examples: (a) Li, W.; Xu, X.; Liu, Y.; Gao, H.; Cheng, Y.; Li, P. Enantioselective Organocatalytic 1,6-Addition of Azlactones to para-Quinone Methides: An Access to α,α-Disubstituted and β,β-Diaryl- α-amino Acid Esters. Org. Lett. 2018, 20, 1142–1145; (b) Wang, D.; Song, Z.-F.; Wang, W.-J.; Xu, T. Highly Regio- and Enantioselective Dienylation of p-Quinone Methides Enabled by an Organocatalyzed Isomerization/Addition Cascade of Allenoates. Org. Lett. 2019, 21, 3963–3967; (c) Pan, T.; Shi, P.; Chen, B.; Zhou, D.-G.; Zeng, Y.-L.; Chu, W.-D.; He, L.; Liu, Q.-Z.; Fan, C.-A. CuH-Catalyzed Asymmetric 1,6-Conjugate Reduction of p-Quinone Methides: Enantioselective Synthesis of Triarylmethanes and 1,1,2-Triarylethanes. Org. Lett. 2019, 21, 6397–6402; (d) Li, F.; Chen, X.; Liang, S.; Shi, Z.; Li, P.; Li, W. Organocatalytic Site- and Stereoselective 1,6-Additions of N-Aryl-3- Oxobutanamides to Propargylic aza-p-Quinone Methides. Org. Chem. Front. 2020, 7, 3446–3451; (e) Ali, A.; Jajoria, R.; Harit, H. K.; Singh, R. P. Diastereoselective 1,6-Addition of α-Phosphonyloxy Enolates to para-Quinone Methides. J. Org. Chem. 2022, 87, 5213–5228; (f) Tan, J.-P.; Chen, Y.; Ren, X.; Guo, Y.; Yi, B.; Zhang, H.; Gao, G.; Wang, T. In Situ Phosphonium-Containing Lewis Base-Catalyzed 1,6-Cyanation Reaction: A Facile Way to Obtain α-Diaryl and α-Triaryl Acetonitriles. Org. Chem. Front. 2022, 9, 156–162; (g) Pan, Y.; Ren, W.; Zhang, Z.; Luo, F.; Hou, X.; Li, X.; Yang, Y.-F.; Wang, Y. Tandem 1,6-Addition/Cyclopropanation/Rearrangement Reaction of Vinylogous para-Quinone Methides with 3-Chlorooxindoles: Construction of Vicinal Quaternary Carbon Centers. Org. Chem. Front. 2022, 9, 3697–3708; (h) Yu, K.-Y.; Ge, X.-M.; Fan, Y.-J.; Liu, X.-T.; Yang, X.; Yang, Y.-H.; Zhao, X.-H.; Tao, X.-A.; Fan, C.-A. Iron(III)-Catalyzed Tandem Annulation of Indolyl-Substituted p-Quinone Methides with Ynamides for the Synthesis of Cyclopenta[b]indoles. Chem. Commun. 2022, DOI: https://doi.org/10.1039/D2CC03252J.
- 17For examples of para-alkoxyl- and para-hydroxy benzyl alcohols: (a) Wong, Y. F.; Wang, Z.; Sun, J. Chiral Phosphoric Acid Catalyzed Asymmetric Addition of Naphthols to para-Quinone Methides. Org. Biomol. Chem. 2016, 14, 5751–5754; (b) Yan, J.; Chen, M.; Sung, H. H.-Y.; Williams, I. D.; Sun, J. An Organocatalytic Asymmetric Synthesis of Chiral β,β-Diaryl-α-amino Acids via Addition of Azlactones to In Situ Generated para-Quinone Methides. Chem. Asian J. 2018, 13, 2440–2444; (c) Niu, J.-P.; Nie, J.; Li, S.; Ma, J.-A. Organocatalytic Asymmetric Synthesis of β,β-diaryl Ketones via One-Pot Tandem Dehydration/1,6-Addition/Decarboxylation Transformation of β-keto Acids and 4-Hydroxybenzyl Alcohols. Chem. Commun. 2020, 56, 8687–8690; (d) Li, X.; Duan, M.; Deng, Z.; Shao, Q.; Chen, M.; Zhu, G.; Houk, K. N.; Sun, J. Catalytic Enantioselective Synthesis of Chiral Tetraarylmethanes. Nat. Catal. 2020, 3, 1010–1019; (e) Yan, J.; Zhang, Z.; Chen, M.; Lin, Z.; Sun, J. A Study of the Reactivity of (Aza-)Quinone Methides in Selective C6-Alkylations of Indoles. ChemCatChem 2020, 12, 5053–5057.
- 18(a) Wang, Z.; Zhu, Y.; Pan, X.; Wang, G.; Liu, L. Synthesis of Chiral Triarylmethanes Bearing All-Carbon Quaternary Stereocenters: Catalytic Asymmetric Oxidative Cross-Coupling of 2,2-Diarylacetonitriles and (Hetero)arenes. Angew. Chem. Int. Ed. 2020, 59, 3053–3057; (b) Mao, Y.; Wang, Z.; Wang, G.; Zhao, R.; Kan, L.; Pan, X.; Liu, L. Redox Deracemization of Tertiary Stereocenters Adjacent to An Electron- withdrawing Group. ACS Catal. 2020, 10, 7785–7791; (c) Pan, X.; Wang, Z.; Kan, L.; Mao, Y.; Zhu, Y.; Liu, L. Cross-dehydrogenative Coupling Enables Enantioselective Access to CF3-substituted Allcarbon Quaternary Stereocenters. Chem. Sci. 2020, 11, 2414–2419; (d) Wang, L.; Wang, N.; Qi, Y.; Sun, S.; Liu, X.; Li, W.; Liu, L. Synthesis of Sterically Hindered α-Aminonitriles through 1,6-Azaconjugate Addition of Anilines to δ-Cyano Substituted para-Quinone Methides. Chin. J. Org. Chem. 2020, 40, 3934–3943; (e) Wang, D.; Kan, L.; Ma, Y.; Liu, L. NaOtBu-Catalyzed Hydrophosphonylation of δ-CN-δ-aryldisubstituted para-Quinone Methides with Phosphine Oxides. Chin. J. Org. Chem. 2021, 41, 3192–3203; (f) Liu, X.; Zhao, C.; Zhu, R.; Liu, L. Construction of Vicinal Quaternary Carbon Stereocenters Through Diastereo- and Enantioselective Oxidative 1,6-Conjugate Addition. Angew. Chem. Int. Ed. 2021, 60, 18499–18503.
- 19For examples: (a) Jiang, F.; Yuan, F.-R.; Jin, L.-W.; Mei, G.-J.; Shi, F. Metal-Catalyzed (4+3) Cyclization of Vinyl Aziridines with para-Quinone Methide Derivatives. ACS Catal. 2018, 8, 10234–10240;
(b) Wang, J.-Y.; Zhang, S.; Yu, X.-Y.; Wang, Y.-H.; Wan, H.-L.; Zhang, S.; Tan, W.; Shi, F. Organocatalytic Asymmetric Synthesis of Bioactive Hexahydropyrrolo[2,3-b]indole-Containing Tetrasubstituted Allenes Bearing Multiple Chiral Elements. Tetrahedron Chem 2022, 1, 100007;
10.1016/j.tchem.2022.100007 Google Scholar(c) Wu, P.; Yu, L.; Gao, C.-H.; Cheng, Q.; Deng, S.; Jiao, Y.; Tan, W.; Shi, F. Design and Synthesis of Axially Chiral Aryl-pyrroloindoles via the Strategy of Organocatalytic Asymmetric (2+3) Cyclization. Fund. Res. 2022, DOI: https://doi.org/10.1016/j.fmre.2022.01.002.10.1016/j.fmre.2022.01.002 Google Scholar
- 20For examples: (a) Hang, Q.-Q.; Liu, S.-J.; Yu, L.; Sun, T.-T.; Zhang, Y.-C.; Mei, G.-J.; Shi, F. Design and Application of Indole-Based Allylic Donors for Pd-Catalyzed Decarboxylative Allylation Reactions. Chin. J. Chem. 2020, 38, 1612–1618; (b) Sheng, F.-T.; Li, Z.-M.; Zhang, Y.-Z.; Sun, L.-X.; Zhang, Y.-C.; Tan, W.; Shi, F. Atroposelective Synthesis of 3,3’-Bisindoles Bearing Axial and Central Chirality: Using Isatin-Derived Imines as Electrophiles. Chin. J. Chem. 2020, 38, 583–589; (c) Chen, K.-W.; Chen, Z.-H.; Yang, S.; Wu, S.-F.; Zhang, Y.-C.; Shi, F. Organocatalytic Atroposelective Synthesis of N−N Axially Chiral Indoles and Pyrroles by De Novo Ring Formation. Angew. Chem. Int. Ed. 2022, 61, e202116829; (d) Hang, Q.-Q.; Wu, S.-F.; Yang, S.; Wang, X.; Zhong, Z.; Zhang, Y.-C.; Shi, F. Design and Catalytic Atroposelective Synthesis of Axially Chiral Isochromenone-Indoles, Sci. China Chem. 2022, DOI: 10.1007/s11426-022-1363-y; For a recent review: (e) Zhang, H.-H.; Shi, F. Organocatalytic Atroposelective Synthesis of Indole Derivatives Bearing Axial Chirality: Strategies and Applications, Acc. Chem. Res. 2022, DOI: https://doi.org/10.1021/acs.accounts.2c00465.
- 21 CCDC 2193764 for compound 3aa. See the Supporting Information for details.
- 22For early reviews: (a) Akiyama, T. Stronger Brønsted Acids. Chem. Rev. 2007, 107, 5744–5758; (b) Terada, M. Binaphthol-Derived Phosphoric Acid as A Versatile Catalyst for Enantioselective Carbon–Carbon Bond Forming Reactions. Chem. Commun. 2008, 2008, 4097–4112; (c) Terada, M. Chiral Phosphoric Acids as Versatile Catalysts for Enantioselective Transformations. Chiral Phosphoric Acids as Versatile Catalysts for Enantioselective Transformations. Synthesis 2010, 2010, 1929–1982; For recent reviews: (d) Xia, Z.-L.; Xu-Xu, Q.-F.; Zheng, C.; You, S.-L. Chiral Phosphoric Acid-Catalyzed Asymmetric Dearomatization Reactions. Chem. Soc. Rev. 2020, 49, 286–300; (e) Li, S.; Xiang, S.-H.; Tan, B. Chiral Phosphoric Acid Creates Promising Opportunities for Enantioselective Photoredox Catalysis. Chin. J. Chem. 2020, 38, 213–214; (f) Lin, X.; Wang, L.; Han, Z.; Chen, Z. Chiral Spirocyclic Phosphoric Acids and Their Growing Applications. Chin. J. Chem. 2021, 39, 802–824; (g) Da, B.-C.; Xiang, S.-H.; Li, S.; Tan, B. Chiral Phosphoric Acid Catalyzed Asymmetric Synthesis of Axially Chiral Compounds. Chin. J. Chem. 2021, 39, 1787–1796; For a highlight: (h) Jiang, M.; Zhou, T.; Shi, B. Construction of A New Class of Oxindole-based Axially Chiral Styrenes via Kinetic Resolution. Chin. J. Org. Chem. 2020, 40, 4364–4366.