Precise and Controllable Assembly of Block Copolymers†
Bixin Jin
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorYiqi Chen
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorYunjun Luo
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorCorresponding Author
Xiaoyu Li
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of Technology, Beijing, 100081 China
E-mail: [email protected]Search for more papers by this authorBixin Jin
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorYiqi Chen
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorYunjun Luo
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorCorresponding Author
Xiaoyu Li
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of Technology, Beijing, 100081 China
E-mail: [email protected]Search for more papers by this author† Dedicated to the Special Issue of Emerging Investigators in 2022.
Comprehensive Summary
With the development of nanotechnology, the precise synthesis of nanoparticles with nicely-defined dimensions and structures has been well-developed, and the functionalization and subsequent applications of the resultant nanostructures are becoming increasingly important. Comparing to inorganic nanoparticles, the nanostructures based on soft matters, especially block copolymer assemblies, are much lower in cost, easier to fabricate and richer in morphology. However, the dimensional control over the block copolymer assemblies is not as easy. Only in recent decade, with the discovery of living Crystallization-Driven Self-Assembly (CDSA) by Manners and Winnik, researchers become able to precisely tune the sizes of block copolymer assemblies in a relatively wide range. This discovery has inspired tremendous research effort in the self-assembly field, and considerable progress has been made recently. This review summarizes the main progress in the precise and controllable self-assembly field in the past five years, and is mostly focused on four aspects, including in-depth understanding of the assembly methods, extension of this method to two-dimensional nanostructures, utilization of this method to fabricate hierarchical structures, and the potential applications of these well-defined nanostructures. We hope not only to make a periodic systematic summary of previous studies, but also to provide some useful thinking for the future development of this field.
References
- 1 Gröschel, A. H.; Walther, A.; Löbling, T. I.; Schacher, F. H.; Schmalz, H.; Müller, A. H. E. Guided Hierarchical Co-Assembly of Soft Patchy Nanoparticles. Nature 2013, 503, 247–251.
- 2 Moughton, A. O.; Hillmyer, M. A.; Lodge, T. P. Multicompartment Block Polymer Micelles. Macromolecules 2012, 45, 2––19.
- 3 Mai, Y.; Eisenberg, A. Self-Assembly of Block Copolymers. Chem. Soc. Rev. 2012, 41, 5969–5985.
- 4 Schacher, F. H.; Rupar, P. A.; Manners, I. Functional Block Copolymers: Nanostructured Materials with Emerging Applications. Angew. Chem. Int. Ed. 2012, 51, 7898–7921.
- 5 Yang, Z.; Sun, N.; Cheng, R.; Zhao, C.; Liu, Z.; Li, X.; Liu, J.; Tian, Z. pH Multistage Responsive Micellar System with Charge-Switch and PEG Layer Detachment for Co-Delivery of Paclitaxel and Curcumin to Synergistically Eliminate Breast Cancer Stem Cells. Biomaterials 2017, 147, 53–67.
- 6 Liang, K.; Chung, J. E.; Gao, S. J.; Yongvongsoontorn, N.; Kurisawa, M. Highly Augmented Drug Loading and Stability of Micellar Nanocomplexes Composed of Doxorubicin and Poly(ethylene glycol)-Green Tea Catechin Conjugate for Cancer Therapy. Adv. Mater. 2018, 30, 1706963.
- 7 Boucher-Jacobs, C.; Rabnawaz, M.; Katz, J. S.; Even, R.; Guironnet, D. Encapsulation of Catalyst in Block Copolymer Micelles for the Polymerization of Ethylene in Aqueous Medium. Nat. Commun. 2018, 9, 841.
- 8 Cheng, X.; Miao, T.; Yin, L.; Ji, Y.; Li, Y.; Zhang, Z.; Zhang, W.; Zhu, X. In Situ Controlled Construction of a Hierarchical Supramolecular Chiral Liquid-Crystalline Polymer Assembly. Angew. Chem. Int. Ed. 2020, 59, 9669–9677.
- 9 Lu, Y.; Lin, J.; Wang, L.; Zhang, L.; Cai, C. Self-Assembly of Copolymer Micelles: Higher-Level Assembly for Constructing Hierarchical Structure. Chem. Rev. 2020, 120, 4111–4140.
- 10 Zhang, D.; Fan, Y.; Chen, H.; Trépout, S.; Li, M. H. CO2-Activated Reversible Transition between Polymersomes and Micelles with AIE Fluorescence. Angew. Chem. Int. Ed. 2019, 58, 10260–10265.
- 11 Zhang, L.; Eisenberg, A. Multiple Morphologies of "Crew-Cut" Aggregates of Polystyrene-b-Poly(acrylic acid) Block Copolymers. Science 1995, 268, 1728–1731.
- 12 Cameron, N. S.; Corbierre, M. K.; Eisenberg, A. 1998 E.W.R. Steacie Award Lecture Asymmetric Amphiphilic Block Copolymers in Solution: A Morphological Wonderland. Can. J. Chem. 1999, 77, 1311–1326.
- 13 Yu, Y.; Eisenberg, A. Control of Morphology through Polymer-Solvent Interactions in Crew-Cut Aggregates of Amphiphilic Block Copolymers. J. Am. Chem. Soc. 1997, 119, 8383–8384.
- 14 Yu, Y.; Zhang, L.; Eisenberg, A. Morphogenic Effect of Solvent on Crew-Cut Aggregates of Apmphiphilic Diblock Copolymers. Macromolecules 1998, 31, 1144–1154.
- 15 Dupont, J.; Liu, G.; Niihara, K.; Kimoto, R.; Jinnai, H. Self-Assembled ABC Triblock Copolymer Double and Triple Helices. Angew. Chem. Int. Ed. 2009, 48, 6144–6147.
- 16 Pochan, D. J.; Chen, Z.; Cui, H.; Hales, K.; Qi, K.; Wooley, K. L. Toroidal Triblock Copolymer Assemblies. Science 2004, 306, 94–97.
- 17 Cui, H.; Chen, Z.; Zhong, S.; Wooley, K. L.; Pochan, D. J. Block Copolymer Assembly via Kinetic Control. Science 2007, 317, 647–650.
- 18 Zhu, J.; Zhang, S.; Zhang, K.; Wang, X.; Mays, J. W.; Wooley, K. L.; Pochan, D. J. Disk-Cylinder and Disk-Sphere Nanoparticles via a Block Copolymer Blend Solution Construction. Nat. Commun. 2013, 4, 2297.
- 19 Li, Z.; Kesselman, E.; Talmon, Y.; Hillmyer, M. A.; Lodge, T. P. Multicompartment Micelles from ABC Miktoarm Stars in Water. Science 2004, 306, 98–101.
- 20 Wang, X. S.; Guerin, G.; Wang, H.; Wang, Y. S.; Manners, I.; Winnik, M. A. Cylindrical Block Copolymer Micelles and Co-Micelles of Controlled Length and Architecture. Science 2007, 317, 644–647.
- 21 Gädt, T.; Ieong, N. S.; Cambridge, G.; Winnik, M. A.; Manners, I. Complex and Hierarchical Micelle Architectures from Diblock Copolymers Using Living, Crystallization-Driven Polymerizations. Nat. Mater. 2009, 8, 144–150.
- 22 He, W. N.; Xu, J. T. Crystallization Assisted Self-Assembly of Semicrystalline Block Copolymers. Prog. Polym. Sci. 2012, 37, 1350–1400.
- 23 Hudson, Z. M.; Boott, C. E.; Robinson, M. E.; Rupar, P. A.; Winnik, M. A.; Manners, I. Tailored Hierarchical Micelle Architectures Using Living Crystallization-Driven Self-Assembly in Two Dimensions. Nat. Chem. 2014, 6, 893–898.
- 24 Schmelz, J.; Schacher, F. H.; Schmalz, H. Cylindrical Crystalline-Core Micelles: Pushing the Limits of Solution Self-Assembly. Soft Matter 2013, 9, 2101–2107.
- 25 Yang, J.; Lévy, D.; Deng, W.; Keller, P.; Li, M. H. Polymer Vesicles Formed by Amphiphilic Diblock Copolymers Containing a Thermotropic Liquid Crystalline Polymer Block. Chem. Commun. 2005, 4345–4347.
- 26 Jia, L.; Cao, A.; Lévy, D.; Xu, B.; Albouy, P. A.; Xing, X. J.; Bowick, M. J.; Li, M. H. Smectic Polymer Vesicles. Soft Matter 2009, 5, 3446–3451.
- 27 Skrabania, K.; Berlepsch, H.; Böttcher, C.; Laschewsky, A. Synthesis of Ternary, Hydrophilic-Lipophilic-Fluorophilic Block Copolymers by Consecutive RAFT Polymerizations and Their Self-Assembly into Multicompartment Micelles. Macromolecules 2010, 43, 271–281.
- 28 Gao, Y.; Li, X. Y.; Hong, L. Z.; Liu, G. J. Mesogen-Driven Formation of Triblock Copolymer Cylindrical Micelles. Macromolecules 2012, 45, 1321–1330.
- 29 Li, X. Y.; Gao, Y.; Xing, X. J.; Liu, G. J. Polygonal Micellar Aggregates of a Triblock Terpolymer Containing a Liquid Crystalline Block. Macromolecules 2013, 46, 7436–7442.
- 30 Huo, M.; Zhang, Y.; Zeng, M.; Liu, L.; Wei, Y.; Yuan, J. Morphology Evolution of Polymeric Assemblies Regulated with Fluoro-Containing Mesogen in Polymerization-Induced Self-Assembly. Macromolecules 2017, 50, 8192–8201.
- 31 Guan, S.; Wen, W.; Yang, Z.; Chen, A. Liquid Crystalline Nanowires by Polymerization Induced Hierarchical Self-Assembly. Macromolecules 2020, 53, 465–472.
- 32 Massey, J. A.; Temple, K.; Cao, L.; Rharbi, Y.; Raez, J.; Winnik, M. A.; Manners, I. Self-Assembly of Organometallic Block Copolymers: The Role of Crystallinity of the Core-Forming Polyferrocene Block in the Micellar Morphologies Formed by Poly(ferrocenylsilane-b-dimethylsiloxane) in n-Alkane Solvents. J. Am. Chem. Soc. 2000, 122, 11577–11584.
- 33 Massey, J.; Power, K. N.; Manners, I.; Winnik, M. A. Self-Assembly of a Novel Organometallic-Inorganic Block Copolymer in Solution and the Solid State: Nonintrusive Observation of Novel Wormlike Poly(ferrocenyldimethylsilane)-b-Poly(dimethylsiloxane) Micelles. J. Am. Chem. Soc. 1998, 120, 9533–9540.
- 34 Qian, J. S.; Li, X. Y.; Lunn, D. J.; Gwyther, J.; Hudson, Z. M.; Kynaston, E.; Rupar, P. A.; Winnik, M. A.; Manners, I. Uniform, High Aspect Ratio Fiber-Like Micelles and Block Co-Micelles with a Crystalline π-Conjugated Polythiophene Core by Self-Seeding. J. Am. Chem. Soc. 2014, 136, 4121–4124.
- 35 Li, X. Y.; Wolanin, P. J.; MacFarlane, L. R.; Harniman, R. L.; Qian, J. S.; Gould, O. E. C.; Dane, T. G.; Rudin, J.; Cryan, M. J.; Schmaltz, T.; Frauenrath, H.; Winnik, M. A.; Faul, C. F. J.; Manners, I. Uniform Electroactive Fibre-Like Micelle Nanowires for Organic Electronics. Nat. Commun. 2017, 8, 15909.
- 36 Arno, M. C.; Inam, M.; Coe, Z.; Cambridge, G.; Macdougall, L. J.; Keogh, R.; Dove, A. P.; O'Reilly, R. K. Precision Epitaxy for Aqueous 1D and 2D Poly(ε-caprolactone) Assemblies. J. Am. Chem. Soc. 2017, 139, 16980–16985.
- 37 He, W. N.; Zhou, B.; Xu, J. T.; Du, B. Y.; Fan, Z. Q. Two Growth Modes of Semicrystalline Cylindrical Poly(ε-caprolactone)-b-Poly(ethylene oxide) Micelles. Macromolecules 2012, 45, 9768–9778.
- 38 Schmelz, J.; Schedl, A. E.; Steinlein, C.; Manners, I.; Schmalz, H. Length Control and Block-Type Architectures in Worm-Like Micelles with Polyethylene Cores. J. Am. Chem. Soc. 2012, 134, 14217–14225.
- 39 Fan, B.; Liu, L.; Li, J. H.; Ke, X. X.; Xu, J. T.; Du, B. Y.; Fan, Z. Q. Crystallization-Driven One-Dimensional Self-Assembly of Polyethylene-b- Poly(tert-butylacrylate) Diblock Copolymers in DMF: Effects of Crystallization Temperature and the Corona-Forming Block. Soft Matter 2016, 12, 67–76.
- 40 Fan, B.; Wang, R. Y.; Wang, X. Y.; Xu, J. T.; Du, B. Y.; Fan, Z. Q. Crystallization-Driven Co-Assembly of Micrometric Polymer Hybrid Single Crystals and Nanometric Crystalline Micelles. Macromolecules 2017, 50, 2006–2015.
- 41 He, X. M.; He, Y. X.; Hsiao, M. S.; Harniman, R. L.; Pearce, S.; Winnik, M. A.; Manners, I. Complex and Hierarchical 2D Assemblies via Crystallization-Driven Self-Assembly of Poly(L-lactide) Homopolymers with Charged Termini. J. Am. Chem. Soc. 2017, 139, 9221–9228.
- 42 He, Y. X.; Eloi, J. C.; Harniman, R. L.; Richardson, R. M.; Whittell, G. R.; Mathers, R. T.; Dove, A. P.; O'Reilly, R. K.; Manners, I. Uniform Biodegradable Fiber-Like Micelles and Block Comicelles via "Living" Crystallization-Driven Self-Assembly of Poly(L-lactide) Block Copolymers: The Importance of Reducing Unimer Self-Nucleation via Hydrogen Bond Disruption. J. Am. Chem. Soc. 2019, 141, 19088–19098.
- 43 Inam, M.; Jones, J. R.; Pérez-Madrigal, M. M.; Arno, M. C.; Dove, A. P.; O'Reilly, R. K. Controlling the Size of Two-Dimensional Polymer Platelets for Water-in-Water Emulsifiers. ACS Cent. Sci. 2018, 4, 63–70.
- 44 Sun, L.; Pitto-Barry, A.; Kirby, N.; Schiller, T. L.; Sanchez, A. M.; Dyson, M. A.; Sloan, J.; Wilson, N. R.; O'Reilly, R. K.; Dove, A. P. Structural Reorganization of Cylindrical Nanoparticles Triggered by Polylactide Stereocomplexation. Nat. Commun. 2014, 5, 5746.
- 45 Tao, D. L.; Feng, C.; Cui, Y. A.; Yang, X.; Manners, I.; Winnik, M. A.; Huang, X. Y. Monodisperse Fiber-Like Micelles of Controlled Length and Composition with an Oligo(p-phenylenevinylene) Core via "Living" Crystallization-Driven Self-Assembly. J. Am. Chem. Soc. 2017, 139, 7136–7139.
- 46 Tao, D. L.; Wang, Z. Q.; Huang, X. Y.; Tian, M. W.; Lu, G. L.; Manners, I.; Winnik, M. A.; Feng, C. Continuous and Segmented Semiconducting Fiber-Like Nanostructures with Spatially Selective Functionalization by Living Crystallization-Driven Self-Assembly. Angew. Chem. Int. Ed. 2020, 59, 8232–8239.
- 47 Shin, S.; Menk, F.; Kim, Y.; Lim, J.; Char, K.; Zentel, R.; Choi, T. L. Living Light-Induced Crystallization-Driven Self-Assembly for Rapid Preparation of Semiconducting Nanofibers. J. Am. Chem. Soc. 2018, 140, 6088–6094.
- 48 Cui, Y. A.; Wang, Z. Q.; Huang, X. Y.; Lu, G. L.; Manners, I.; Winnik, M. A.; Feng, C. How a Small Change of Oligo(p-phenylenevinylene) Chain Length Affects Self-Seeding of Oligo(p-phenylenevinylene)-Containing Block Copolymers. Macromolecules 2020, 53, 1831–1841.
- 49 Finnegan, J. R.; He, X. M.; Street, S. T. G.; Garcia-Hernandez, J. D.; Hayward, D. W.; Harniman, R. L.; Richardson, R. M.; Whittell, G. R.; Manners, I. Extending the Scope of "Living" Crystallization-Driven Self-Assembly: Well-Defined 1D Micelles and Block Comicelles from Crystallizable Polycarbonate Block Copolymers. J. Am. Chem. Soc. 2018, 140, 17127–17140.
- 50 Li, X. Y.; Jin, B. X.; Gao, Y.; Hayward, D. W.; Winnik, M. A.; Luo, Y. J.; Manners, I. Monodisperse Cylindrical Micelles of Controlled Length with a Liquid-Crystalline Perfluorinated Core by 1D "Self-Seeding". Angew. Chem. Int. Ed. 2016, 55, 11392–11396.
- 51 Jin, B. X.; Sano, K.; Aya, S.; Ishida, Y.; Gianneschi, N.; Luo, Y. J.; Li, X. Y. One-Pot Universal Initiation-Growth Methods from a Liquid Crystalline Block Copolymer. Nat. Commun. 2019, 10, 2397.
- 52 Chen, Y. Q.; Jin, B. X.; Li, Q.; Luo, Y. J.; Chi, S. M.; Li, X. Y. Precise Supramolecular Polymerization of Liquid Crystalline Block Copolymer Initiated by Heavy Metallic Salts. Chinese J. Polym. Sci. 2022, 40, 624–630.
- 53 Luo, M. Y.; Jin, B. X.; Luo, Y. J.; Li, X. Y. Supramicellar Nanofibrils with End-to-End Coupled Uniform Cylindrical Micelle Subunits via One- Step Assembly from a Liquid Crystalline Block Copolymer. Macromolecules 2021, 54, 6845–6853.
- 54 Kang, L. Y.; Chao, A.; Zhang, M.; Yu, T. Y.; Wang, J.; Wang, Q.; Yu, H. H.; Jiang, N. S.; Zhang, D. H. Modulating the Molecular Geometry and Solution Self-Assembly of Amphiphilic Polypeptoid Block Copolymers by Side Chain Branching Pattern. J. Am. Chem. Soc. 2021, 143, 5890–5902.
- 55 Jin, X.; Zhang, C. Y.; Lin, J. P.; Cai, C. H.; Chen, J. D.; Gao, L. Fusion Growth of Two-Dimensional Disklike Micelles via Liquid-Crystallization-Driven Self-Assembly. Macromolecules 2022, 55, 3831–3839.
- 56 Chen, G. F.; Zhang, G. P.; Jin, B. X.; Luo, M. Y.; Luo, Y. J.; Aya, S.; Li, X. Y. Supramolecular Hexagonal Platelet Assemblies with Uniform and Precisely-Controlled Dimensions. J. Am. Chem. Soc. 2019, 141, 15498–15503.
- 57 Fukui, T.; Garcia-Hernandez, J. D.; MacFarlane, L. R.; Lei, S.; Whittell, G. R.; Manners, I. Seeded Self-Assembly of Charge-Terminated Poly(3-hexylthiophene) Amphiphiles Based on the Energy Landscape. J. Am. Chem. Soc. 2020, 142, 15038–15048.
- 58 Xu, J. P.; Zhou, H.; Yu, Q.; Guerin, G.; Manners, I.; Winnik, M. A. Synergistic Self-Seeding in One-Dimension: A Route to Patchy and Block Comicelles with Uniform and Controllable Length. Chem. Sci. 2019, 10, 2280–2284.
- 59 Gao, L.; Lin, J. P.; Zhang, L. S.; Wang, L. Q. Living Supramolecular Polymerization of Rod-Coil Block Copolymers: Kinetics, Origin of Uniformity, and Its Implication. Nano Lett. 2019, 19, 2032–2036.
- 60 Song, S.; Liu, X.; Nikbin, E.; Howe, J. Y.; Yu, Q.; Manners, I.; Winnik, M. A. Uniform 1D Micelles and Patchy & Block Comicelles via Scalable, One-Step Crystallization-Driven Block Copolymer Self-Assembly. J. Am. Chem. Soc. 2021, 143, 6266–6280.
- 61 Tritschler, U.; Pearce, S.; Gwyther, J.; Whittell, G. R.; Manners, I. 50th Anniversary Perspective: Functional Nanoparticles from the Solution Self-Assembly of Block Copolymers. Macromolecules 2017, 50, 3439–3463.
- 62 Ganda, S.; Stenzel, M. H. Concepts, Fabrication Methods and Applications of Living Crystallization-Driven Self-Assembly of Block Copolymers. Prog. Polym. Sci. 2020, 101, 101195.
- 63 Hils, C.; Manners, I.; Schöbel, J.; Schmalz, H. Patchy Micelles with a Crystalline Core: Self-Assembly Concepts, Properties, and Applications. Polymers 2021, 13, 1481.
- 64 Qiu, H. B.; Gao, Y.; Boott, C. E.; Gould, O. E. C.; Harniman, R. L.; Miles, M. J.; Webb, S. E. D.; Winnik, M. A.; Manners, I. Uniform Patchy and Hollow Rectangular Platelet Micelles from Crystallizable Polymer Blends. Science 2016, 352, 697–701.
- 65 He, X. M.; Hsiao, M. S.; Boott, C. E.; Harniman, R. L.; Nazemi, A.; Li, X. Y.; Winnik, M. A.; Manners, I. Two-Dimensional Assemblies from Crystallizable Homopolymers with Charged Termini. Nat. Mater. 2017, 16, 481–488.
- 66 Lunn, D. J.; Gould, O. E. C.; Whittell, G. R.; Armstrong, D. P.; Mineart, K. P.; Winnik, M. A.; Spontak, R. J.; Pringle, P. G.; Manners, I. Microfibres and Macroscopic Films from the Coordination-Driven Hierarchical Self-Assembly of Cylindrical Micelles. Nat. Commun. 2016, 7, 12371.
- 67 Li, X. Y.; Gao, Y.; Boott, C. E.; Hayward, D. W.; Harniman, R.; Whittell, G. R.; Richardson, R. M.; Winnik, M. A.; Manners, I. "Cross" Supermicelles via the Hierarchical Assembly of Amphiphilic Cylindrical Triblock Comicelles. J. Am. Chem. Soc. 2016, 138, 4087–4095.
- 68 Li, X. Y.; Gao, Y.; Harniman, R.; Winnik, M.; Manners, I. Hierarchical Assembly of Cylindrical Block Comicelles Mediated by Spatially Confined Hydrogen-Bonding Interactions. J. Am. Chem. Soc. 2016, 138, 12902–12912.
- 69 Dou, H.; Li, M.; Qiao, Y.; Harniman, R.; Li, X.; Boott, C. E.; Mann, S.; Manners, I. Higher-Order Assembly of Crystalline Cylindrical Micelles into Membrane-Extendable Colloidosomes. Nat. Commun. 2017, 8, 426.
- 70 Guerin, G.; Cruz, M.; Yu, Q. Formation of 2D and 3D Multi-Tori Mesostructures via Crystallization-Driven Self-Assembly. Sci. Adv. 2020, 6, eaaz7301.
- 71 Cai, J.; Li, C.; Kong, N.; Lu, Y.; Lin, G.; Wang, X.; Yao, Y.; Manners, I.; Qiu, H. Tailored Multifunctional Micellar Brushes via Crystallization-Driven Growth from a Surface. Science 2019, 366, 1095–1098.
- 72 Jin, X. H.; Price, M. B.; Finnegan, J. R.; Boott, C. E.; Richter, J. M.; Rao, A.; Menke, S. M.; Friend, R. H.; Whittell, G. R.; Manners, I. Long-Range Exciton Transport in Conjugated Polymer Nanofibers Prepared by Seeded Growth. Science 2018, 360, 897–900.
- 73 Ganda, S.; Wong, C. K.; Stenzel, M. H. Corona-Loading Strategies for Crystalline Particles Made by Living Crystallization-Driven Self-assembly. Macromolecules 2021, 54, 6662–6669.
- 74 Gilroy, J. B.; Gädt, T.; Whittell, G. R.; Chabanne, L.; Mitchels, J. M.; Richardson, R. M.; Winnik, M. A.; Manners, I. Monodisperse Cylindrical Micelles by Crystallization-Driven Living Self-Assembly. Nat. Chem. 2010, 2, 566–570.
- 75 Oliver, A. M.; Gwyther, J.; Boott, C. E.; Davis, S.; Pearce, S.; Manners, I. Scalable Fiber-like Micelles and Block Co-micelles by Polymerization-Induced Crystallization-Driven Self-Assembly. J. Am. Chem. Soc. 2018, 140, 18104–18114.
- 76 Boott, C. E.; Gwyther, J.; Harniman, R. L.; Hayward, D. W.; Manners, I. Scalable and Uniform 1D Nanoparticles by Synchronous Polymerization, Crystallization and Self-Assembly. Nat. Chem. 2017, 9, 785–792.
- 77 Oliver, A. M.; Gwyther, J.; Winnik, M. A.; Manners, I. Cylindrical Micelles with "Patchy" Coronas from the Crystallization-Driven Self-Assembly of ABC Triblock Terpolymers with a Crystallizable Central Polyferrocenyldimethylsilane Segment. Macromolecules 2018, 51, 222–231.
- 78 MacFarlane, L. R.; Li, X. Y.; Faul, C. F. J.; Manners, I. Efficient and Controlled Seeded Growth of Poly(3-hexylthiophene) Block Copolymer Nanofibers through Suppression of Homogeneous Nucleation. Macromolecules 2021, 54, 11269–11280.
- 79 Xu, L.; Wang, C.; Li, Y. X.; Xu, X. H.; Zhou, L.; Liu, N.; Wu, Z. Q. Crystallization-Driven Asymmetric Helical Assembly of Conjugated Block Copolymers and the Aggregation Induced White-Light Emission and Circularly Polarized Luminescence. Angew. Chem. Int. Ed. 2020, 59, 16675–16682.
- 80 Wang, C.; Xu, L.; Zhou, L.; Liu, N.; Wu, Z. Q. Asymmetric Living Supramolecular Polymerization: Precise Fabrication of One-Handed Helical Supramolecular Polymers. Angew. Chem. Int. Ed. 2022, e202207028.
- 81 Schmelz, J.; Pirner, D.; Krekhova, M.; Ruhland, T. M.; Schmalz, H. Interfacial Activity of Patchy Worm-Like Micelles. Soft Matter 2013, 9, 11173–11177.
- 82 Schmelz, J.; Schmalz, H. Corona Structure on Demand: Tailor-Made Surface Compartmentalization in Worm-like Micelles via Random Cocrystallization. Polymer 2012, 53, 4333–4337.
- 83 Rosenfeldt, S.; Ludel, F.; Schulreich, C.; Hellweg, T.; Radulescu, A.; Schmelz, J.; Schmalz, H.; Harnau, L. Patchy Worm-Like Micelles: Solution Structure Studied by Small-Angle Neutron Scattering. Phys. Chem. Chem. Phys. 2012, 14, 12750–12756.
- 84 Schobel, J.; Karg, M.; Rosenbach, D.; Krauss, G.; Greiner, A.; Schmalz, H. Patchy Wormlike Micelles with Tailored Functionality by Crystallization-Driven Self-Assembly: A Versatile Platform for Mesostructured Hybrid Materials. Macromolecules 2016, 49, 2761–2771.
- 85 Schmalz, H.; Schmelz, J.; Drechsler, M.; Yuan, J.; Walther, A.; Schweimer, K.; Mihut, A. M. Thermo-Reversible Formation of Wormlike Micelles with a Microphase-Separated Corona from a Semicrystalline Triblock Terpolymer. Macromolecules 2008, 41, 3235–3242.
- 86 Schmelz, J.; Karg, M.; Hellweg, T.; Schmalz, H. General Pathway toward Crystalline-Core Micelles with Tunable Morphology and Corona Segregation. ACS Nano 2011, 5, 9523–9534.
- 87 Schobel, J.; Hils, C.; Weckwerth, A.; Schlenk, M.; Bojer, C.; Stuart, M. C. A.; Breu, J.; Forster, S.; Greiner, A.; Karg, M.; Schmalz, H. Strategies for the Selective Loading of Patchy Worm-Like Micelles with Functional Nanoparticles. Nanoscale 2018, 10, 18257–18268.
- 88 Yang, S.; Choi, T.-L. Rapid formation and real-time observation of micron-sized conjugated nanofibers with tunable lengths and widths in 20 minutes by living crystallization-driven self-assembly. Chem. Sci. 2020, 11, 8416–8424.
- 89 Sun, H.; Chen, S.; Li, X.; Leng, Y.; Zhou, X. Y.; Du, J. Z. Lateral Growth of Cylinders. Nat. Commun. 2022, 13, 2170.
- 90 Gao, L.; Gao, H. B.; Lin, J. P.; Wang, L. Q.; Wang, X. S.; Yang, C. M.; Lin, S. L. Growth and Termination of Cylindrical Micelles via Liquid-Crystallization-Driven Self-Assembly. Macromolecules 2020, 53, 8992–8999.
- 91 Cheng, D. B.; Wang, D.; Gao, Y. J.; Wang, L.; Qiao, Z. Y.; Wang, H. Autocatalytic Morphology Transformation Platform for Targeted Drug Accumulation. J. Am. Chem. Soc. 2019, 141, 4406–4411.
- 92 Ma, J. Y.; Lu, G. L.; Huang, X. Y.; Feng, C. π-Conjugated-Polymer-Based Nanofibers Through Living Crystallization-Driven Self-assembly: Preparation, Properties and Applications. Chem. Commun. 2021, 57, 13259–13274.
- 93 Yang, X.; Ruan, J. Y.; Ma, C.; Hao, B. J.; Huang, X. Y.; Lu, G. L.; Feng, C. Synthesis and Self-Seeding Behavior of Oligo(p-phenylene vinylene)- b-Poly(N-(2-hydroxypropyl) methacrylamide). Polym. Chem. 2019, 10, 4718–4731.
- 94 Tao, D. L.; Feng, C.; Lu, Y. J.; Cui, Y. N.; Yang, X.; Manners, I.; Winnik, M. A.; Huang, X. Y. Self-Seeding of Block Copolymers with a π-Conjugated Oligo(p-phenylenevinylene) Segment: A Versatile Route toward Monodisperse Fiber-Like Nanostructures. Macromolecules 2018, 51, 2065–2075.
- 95 Cui, Y. N.; Tao, D. L.; Huang, X. Y.; Lu, G. L.; Feng, C. Self-Assembled Helical and Twisted Nanostructures of a Preferred Handedness from Achiral π-Conjugated Oligo(p-phenylenevinylene) Derivatives. Langmuir 2019, 35, 3134–3142.
- 96 Wang, Z. Q.; Ma, C.; Huang, X. Y.; Lu, G. L.; Winnik, M. A.; Feng, C. Self-Seeding of Oligo(p-phenylenevinylene)-b-poly(2-vinylpyridine) Micelles: Effect of Metal Ions. Macromolecules 2021, 54, 6705–6717.
- 97 Gilroy, J. B.; Lunn, D. J.; Patra, S. K.; Whittell, G. R.; Winnik, M. A.; Manners, I. Fiber-Like Micelles via the Crystallization-Driven Solution Self-Assembly of Poly(3-hexylthiophene)-block-Poly(methyl methacrylate) Copolymers. Macromolecules 2012, 45, 5806–5815.
- 98 Yang, J. X.; Fan, B.; Li, J. H.; Xu, J. T.; Du, B. Y.; Fan, Z. Q. Hydrogen-Bonding-Mediated Fragmentation and Reversible Self-Assembly of Crystalline Micelles of Block Copolymer. Macromolecules 2016, 49, 367–372.
- 99 Fan, B.; Xue, J. Q.; Guo, X. S.; Cao, X. H.; Wang, R. Y.; Xu, J. T.; Du, B. Y.; Fan, Z. Q. Regulated Fragmentation of Crystalline Micelles of Block Copolymer via Monoamine-Induced Corona Swelling. Macromolecules 2018, 51, 7637–7648.
- 100 Sun, L.; Petzetakis, N.; Pitto-Barry, A.; Schiller, T. L.; Kirby, N.; Keddie, D. J.; Boyd, B. J.; O'Reilly, R. K.; Dove, A. P. Tuning the Size of Cylindrical Micelles from Poly(L-lactide)-b-poly(acrylic acid) Diblock Copolymers Based on Crystallization-Driven Self-Assembly. Macromolecules 2013, 46, 9074–9082.
- 101 Petzetakis, N.; Dove, A. P.; O'Reilly, R. K. Cylindrical Micelles from the Living Crystallization-Driven Self-Assembly of Poly(lactide)-Containing Block Copolymers. Chem. Sci. 2011, 2, 955–960.
- 102 Inam, M.; Cambridge, G.; Pitto-Barry, A.; Laker, Z. P. L.; Wilson, N. R.; Mathers, R. T.; Dove, A. P.; O'Reilly, R. K. 1D vs. 2D Shape Selectivity in the Crystallization-Driven Self-Assembly of Polylactide Block Copolymers. Chem. Sci. 2017, 8, 4223–4230.
- 103 Qiu, H. B.; Cambridge, G.; Winnik, M. A.; Manners, I. Multi-Armed Micelles and Block Co-Micelles via Crystallization-Driven Self-Assembly with Homopolymer Nanocrystals as Initiators. J. Am. Chem. Soc. 2013, 135, 12180–12183.
- 104 Qiu, H. B.; Gao, Y.; Du, V.; Harniman, R.; Winnik, M. A.; Manners, I. Branched Micelles by Living Crystallization-Driven Block Copolymer Self-Assembly under Kinetic Control. J. Am. Chem. Soc. 2015, 137, 2375–2385.
- 105 Finnegan, J. R.; Lunn, D. J.; Gould, O. E. C.; Hudson, Z. M.; Whittell, G. R.; Winnik, M. A.; Manners, I. Gradient Crystallization-Driven Self-Assembly: Cylindrical Micelles with "Patchy" Segmented Coronas via the Coassembly of Linear and Brush Block Copolymers. J. Am. Chem. Soc. 2014, 136, 13835–13844.
- 106 Nazemi, A.; He, X. M.; MacFarlane, L. R.; Harniman, R. L.; Hsiao, M. S.; Winnik, M. A.; Faul, C. F. J.; Manners, I. Uniform "Patchy" Platelets by Seeded Heteroepitaxial Growth of Crystallizable Polymer Blends in Two Dimensions. J. Am. Chem. Soc. 2017, 139, 4409–4417.
- 107 Song, S. F.; Zhou, H.; Hicks, G.; Jiang, J. J.; Zhang, Y. F.; Manners, I.; Winnik, M. A. An Amphiphilic Corona-Forming Block Promotes Formation of a Variety of 2D Platelets via Crystallization-Driven Block Copolymer Self-Assembly. Macromolecules 2021, 54, 9761–9772.
- 108 Su, Y. W.; Jiang, Y. K.; Liu, L. P.; Xie, Y. J.; Chen, S. C.; Wang, Y. J.; O'Reilly, R. K.; Tong, Z. Z. Hydrogen-Bond-Regulated Platelet Micelles by Crystallization-Driven Self-Assembly and Templated Growth for Poly(ε-caprolactone) Block Copolymers. Macromolecules 2022, 55, 1067–1076.
- 109 Yang, S.; Kang, S. Y.; Choi, T. L. Semi-Conducting 2D Rectangles with Tunable Length via Uniaxial Living Crystallization-Driven Self-assembly of Homopolymer. Nat. Commun. 2021, 12, 2602.
- 110 Jin, B. X.; Liu, G. J.; Li, X. Y. The Origins of Toroidal Micelles from a Liquid-Crystalline Triblock Copolymer. Chin. J. Chem. 2020, 38, 1709–1717.
- 111 Pinol, R.; Jia, L.; Gubellini, F.; Levy, D.; Albouy, P. A.; Keller, P.; Cao, A.; Li, M. H. Self-Assembly of PEG-b-Liquid Crystal Polymer: The Role of Smectic Order in the Formation of Nanofibers. Macromolecules 2007, 40, 5625–5627.
- 112 Merg, A. D.; van Genderen, E.; Bazrafshan, A.; Su, H. Q.; Zuo, X. B.; Touponse, G.; Blum, T. B.; Salaita, K.; Abrahams, J. P.; Conticello, V. P. Seeded Heteroepitaxial Growth of Crystallizable Collagen Triple Helices: Engineering Multifunctional Two-Dimensional Core-Shell Nanostructures. J. Am. Chem. Soc. 2019, 141, 20107–20117.
- 113 Han, L.; Wang, M.; Jia, X.; Chen, W.; Qian, H.; He, F. Uniform Two-Dimensional Square Assemblies from Conjugated Block Copolymers Driven by π–π Interactions with Controllable Sizes. Nat. Commun. 2018, 9, 865.
- 114 Zhu, Y. L.; Han, L.; Fan, H.; Wang, M. J.; Qi, R.; Zhao, Y.; He, F. Three-Dimensional Spirals of Conjugated Block Copolymers Driven by Screw Dislocation. Macromolecules 2020, 53, 3217–3223.
- 115 Qi, R.; Zhu, Y.; Han, L.; Wang, M.; He, F. Rectangular Platelet Micelles with Controlled Aspect Ratio by Hierarchical Self-Assembly of Poly(3- hexylthiophene)-b-Poly(ethylene glycol). Macromolecules 2020, 53, 6555–6565.
- 116 Li, X. Y.; Gao, Y.; Boott, C. E.; Winnik, M. A.; Manners, I. Non-Covalent Synthesis of Supermicelles with Complex Architectures Using Spatially Confined Hydrogen-Bonding Interactions. Nat. Commun. 2015, 6, 8127.
- 117 Rupar, P. A.; Chabanne, L.; Winnik, M. A.; Manners, I. Non-Centrosymmetric Cylindrical Micelles by Unidirectional Growth. Science 2012, 337, 559–562.
- 118 Qiu, H. B.; Hudson, Z. M.; Winnik, M. A.; Manners, I. Multidimensional Hierarchical Self-Assembly of Amphiphilic Cylindrical Block Comicelles. Science 2015, 347, 1329–1332.
- 119 Thompson, K. L.; Williams, M.; Armes, S. P. Colloidosomes: Synthesis, Properties and Applications. J. Colloid Interface Sci. 2015, 447, 217–228.
- 120 Noble, P. F.; Cayre, O. J.; Alargova, R. G.; Velev, O. D.; Paunov, V. N. Fabrication of "Hairy" Colloidosomes with Shells of Polymeric Microrods. J. Am. Chem. Soc. 2004, 126, 8092–8093.
- 121 Song, Y.; Shimanovich, U.; Michaels, T. C. T.; Ma, Q.; Li, J.; Knowles, T. P. J.; Shum, H. C. Fabrication of Fibrillosomes from Droplets Stabilized by Protein Nanofibrils at All-Aqueous Interfaces. Nat. Commun. 2016, 7, 12934.
- 122 Jia, L.; Tong, L.; Liang, Y.; Petretic, A.; Guerin, G.; Manners, I.; Winnik, M. A. Templated Fabrication of Fiber-Basket Polymersomes via Crystallization-Driven Block Copolymer Self-Assembly. J. Am. Chem. Soc. 2014, 136, 16676–16682.
- 123 McGrath, N.; Patil, A. J.; Watson, S. M. D.; Horrocks, B. R.; Faul, C. F. J.; Houlton, A.; Winnik, M. A.; Mann, S.; Manners, I. Conductive, Monodisperse Polyaniline Nanofibers of Controlled Length Using Well-Defined Cylindrical Block Copolymer Micelles as Templates. Chem. Eur. J. 2013, 19, 13030–13039.
- 124 Gao, Y.; Qiu, H. B.; Zhou, H.; Li, X. Y.; Harniman, R.; Winnik, M. A.; Manners, I. Crystallization-Driven Solution Self-Assembly of Block Copolymers with a Photocleavable Junction. J. Am. Chem. Soc. 2015, 137, 2203–2206.
- 125 Jia, L.; Zhao, G.; Shi, W.; Coombs, N.; Gourevich, I.; Walker, G. C.; Guerin, G.; Manners, I.; Winnik, M. A. A Design Strategy for the Hierarchical Fabrication of Colloidal Hybrid Mesostructures. Nat. Commun. 2014, 5, 3882.
- 126 Wang, H.; Lin, W. J.; Fritz, K. P.; Scholes, G. D.; Winnik, M. A.; Manners, I. Cylindrical Block Co-micelles with Spatially Selective Functionalization by Nanoparticles. J. Am. Chem. Soc. 2007, 129, 12924–12925.
- 127 Wang, H.; Patil, A. J.; Liu, K.; Petrov, S.; Mann, S.; Winnik, M. A.; Manners, I. Fabrication of Continuous and Segmented Polymer/Metal Oxide Nanowires Using Cylindrical Micelles and Block Comicelles as Templates. Adv. Mater. 2009, 21, 1805–1808.
- 128 Jia, L.; Petretic, A.; Molev, G.; Guerin, G.; Manners, I.; Winnik, M. A. Hierarchical Polymer-Carbon Nanotube Hybrid Mesostructures by Crystallization-Driven Self-Assembly. ACS Nano 2015, 9, 10673–10685.
- 129 Vogelsang, J.; Adachi, T.; Brazard, J.; Vanden Bout, D. A.; Barbara, P. F. Self-Assembly of Highly Ordered Conjugated Polymer Aggregates with Long-Range Energy Transfer. Nat. Mater. 2011, 10, 942–946.
- 130 Meyer, R. A.; Green, J. J. Shaping the Future of Nanomedicine: Anisotropy in Polymeric Nanoparticle Design. WIRES Nanomed. Nanobi. 2016, 8, 191–207.
- 131 Williams, D. S.; Pijpers, I. A. B.; Ridolfo, R.; van Hest, J. C. M. Controlling the Morphology of Copolymeric Vectors for Next Generation Nanomedicine. J. Control. Release 2017, 259, 29–39.
- 132 Xiong, F.; Tian, J. L.; Hu, K.; Zheng, X. W.; Sun, J. F.; Yan, C. Y.; Yao, J.; Song, L. N.; Zhang, Y.; Gu, N. Superparamagnetic Anisotropic Nano-Assemblies with Longer Blood Circulation in vivo: A Highly Efficient Drug Delivery Carrier for Leukemia Therapy. Nanoscale 2016, 8, 17085–17089.
- 133 Geng, Y.; Dalhaimer, P.; Cai, S.; Tsai, R.; Tewari, M.; Minko, T.; Discher, D. E. Shape Effects of Filaments Versus Spherical Particles in Flow and Drug Delivery. Nat. Nanotech. 2007, 2, 249–255.
- 134 Sato, K.; Ji, W.; Palmer, L. C.; Weber, B.; Barz, M.; Stupp, S. I. Programmable Assembly of Peptide Amphiphile via Noncovalent-to- Covalent Bond Conversion. J. Am. Chem. Soc. 2017, 139, 8995–9000.
- 135 Arno, M. C.; Inam, M.; Weems, A. C.; Li, Z.; Binch, A. L. A.; Platt, C. I.; Richardson, S. M.; Hoyland, J. A.; Dove, A. P.; O'Reilly, R. K. Exploiting the Role of Nanoparticle Shape in Enhancing Hydrogel Adhesive and Mechanical Properties. Nat. Commun. 2020, 11, 1420.
- 136 Li, Z.; Sun, L.; Zhang, Y. F.; Dove, A. P.; O'Reilly, R. K.; Chen, G. S. Shape Effect of Glyco-Nanoparticles on Macrophage Cellular Uptake and Immune Response. ACS Macro Lett. 2016, 5, 1059–1064.
- 137 Li, Z.; Zhang, Y. F.; Wu, L. B.; Yu, W.; Wilks, T. R.; Dove, A. P.; Ding, H. M.; O'Reilly, R. K.; Chen, G. S.; Jiang, M. Glyco-Platelets with Controlled Morphologies via Crystallization-Driven Self-Assembly and Their Shape-Dependent Interplay with Macrophages. ACS Macro Lett. 2019, 8, 596–602.
- 138 Liu, L. H.; Xu, K. J.; Wang, H. Y.; Jeremy Tan, P. K.; Fan, W. M.; Venkatraman, S. S.; Li, L. J.; Yang, Y. Y. Self-Assembled Cationic Peptide Nanoparticles as an Efficient Antimicrobial Agent. Nat. Nanotech. 2009, 4, 457–463.
- 139 Inam, M.; Foster, J. C.; Gao, J. Y.; Hong, Y. X.; Du, J. Z.; Dove, A. P.; O'Reilly, R. K. Size and Shape Affects the Antimicrobial Activity of Quaternized Nanoparticles. J. Polym. Sci. Pol. Chem. 2019, 57, 255–259.
- 140 Nazemi, A.; Boott, C. E.; Lunn, D. J.; Gwyther, J.; Hayward, D. W.; Richardson, R. M.; Winnik, M. A.; Manners, I. Monodisperse Cylindrical Micelles and Block Comicelles of Controlled Length in Aqueous Media. J. Am. Chem. Soc. 2016, 138, 4484–4493.
- 141 Xu, J.; Bellas, V.; Jungnickel, B.; Stühn, B.; Rehahn, M. A Novel Crystallization Scheme in Poly[styrene-block-(ferrocenyl dimethylsilane)] Diblock Copolymers. Macromol. Chem. Phys. 2010, 211, 2276–2285.
- 142 Lammertink, R. G. H.; Hempenius, M. A.; Manners, I.; Vancso, G. J. Crystallization and Melting Behavior of Poly(ferrocenyldimethylsilanes) Obtained by Anionic Polymerization. Macromolecules 1998, 31, 795–800.