Preparation of Perovskite Solar Cells in the Air: Degradation Mechanism and Prospects on Large-Area Fabrication†
Shuaishuai Guo
School of Physics and Materials, Nanchang University, 999 Xuefu Avenue, Nanchang, Jiangxi, 330031 China
Search for more papers by this authorKaikai Liu
College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, Jiangxi, 330031 China
Search for more papers by this authorLi Rao
School of Physics and Materials, Nanchang University, 999 Xuefu Avenue, Nanchang, Jiangxi, 330031 China
Search for more papers by this authorCorresponding Author
Xiaotian Hu
College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, Jiangxi, 330031 China
Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, 226010 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Yiwang Chen
College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, Jiangxi, 330031 China
Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, 226010 China
National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Venue, Nanchang, Jiangxi, 330022 China
E-mail: [email protected]; [email protected]Search for more papers by this authorShuaishuai Guo
School of Physics and Materials, Nanchang University, 999 Xuefu Avenue, Nanchang, Jiangxi, 330031 China
Search for more papers by this authorKaikai Liu
College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, Jiangxi, 330031 China
Search for more papers by this authorLi Rao
School of Physics and Materials, Nanchang University, 999 Xuefu Avenue, Nanchang, Jiangxi, 330031 China
Search for more papers by this authorCorresponding Author
Xiaotian Hu
College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, Jiangxi, 330031 China
Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, 226010 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Yiwang Chen
College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, Jiangxi, 330031 China
Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, 226010 China
National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Venue, Nanchang, Jiangxi, 330022 China
E-mail: [email protected]; [email protected]Search for more papers by this author†Dedicated to the Special Issue of Emerging Investigators in 2022.
Comprehensive Summary
The preparation of perovskite solar cells (PSCs) in the air environment has attracted the attention of numerous experimenters due to its low preparation cost and the possibility of commercialization. Although the power conversion efficiency (PCE) of PSCs has increased rapidly and exceeded 25%, which is comparable to commercial polysilicon solar cells, most certified or reported high-efficiency perovskite solar cells are still confined to glove boxes or relatively small active areas in the air environment due to moisture, oxygen, high temperature, and ultraviolet (UV) factors. In this review, the factors that lead to perovskite degradation are reviewed, and the appropriate strategies for manufacturing high-efficiency and stable perovskite solar cells under environmental conditions are summarized to help the technology be commercialized for high-quality, stable, and large-area perovskite thin films in the air.
References
- 1 Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M. D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 2019, 24, 38–50.
- 2 Lin, S. Y.; Moreno, J.; Fleming, J. G. Three-dimensional photonic- crystal emitter for thermal photovoltaic power generation. Appl. Phys. Lett. 2003, 83, 380–382.
- 3 Xiao, J. W.; Liu, L.; Zhang, D.; De Marco, N.; Lee, J. W.; Lin, O.; Chen, Q.; Yang, Y. The emergence of the mixed perovskites and their applications as solar cells. Adv. Energy Mater. 2017, 7, 1700491.
- 4 Wang, G.; Wang, L.; Qiu, J.; Yan, Z.; Tai, K.; Yu, W.; Jiang, X. Fabrication of efficient formamidinium perovskite solar cells under ambient air via intermediate-modulated crystallization. Solar Energy 2019, 187, 147–155.
- 5 Jiang, S.; Bai, Y.; Ma, Z.; Jin, S.; Zou, C.; Tan, Z. Recent advances of monolithic all-perovskite tandem solar cells: from materials to devices. Chin. J. Chem. 2022, 40, 856–871.
- 6 Aranda, C.; Cristobal, C.; Shooshtari, L.; Li, C.; Huettner, S.; Guerrero, A. Formation criteria of high efficiency perovskite solar cells under ambient conditions. Sustain. Energy Fuels 2017, 1, 540–547.
- 7 Huang, J.; Tan, S.; Lund, P. D.; Zhou, H. Impact of H2O on organic-inorganic hybrid perovskite solar cells. Energy Environ. Sci. 2017, 10, 2284–2311.
- 8 Huang, X.; Chen, R.; Deng, G.; Han, F.; Ruan, P.; Cheng, F.; Yin, J.; Wu, B.; Zheng, N. Methylamine-dimer-induced phase transition toward MAPbI3 films and high-efficiency perovskite solar modules. J. Am. Chem. Soc. 2020, 142, 6149–6157.
- 9 You, J.; Yang, Y.; Hong, Z.; Song, T. B.; Meng, L.; Liu, Y.; Jiang, C.; Zhou, H.; Chang, W. H.; Li, G.; Yang, Y. Moisture assisted perovskite film growth for high performance solar cells. Appl. Phys. Lett. 2014, 105, 183902.
- 10 Chao, L.; Xia, Y.; Li, B.; Xing, G.; Chen, Y.; Huang, W.; Room-temperature molten salt for facile fabrication of efficient and stable perovskite solar cells in ambient air. Chem 2019, 5, 995–1006.
- 11 Kagan, C. R.; Mitzi, D. B.; Dimitrakopoulos, C. D. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 1999, 286, 945–947.
- 12 Bi, P.; Zhang, S.; Wang, J.; Ren, J.; Hou, J. Progress in organic solar cells: materials, physics and device engineering. Chin. J. Chem. 2021, 39, 2607–2625.
- 13 Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.
- 14 Im, J. H., Lee, C. R.; Lee, J. W.; Park, S. W.; Park, N. G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 2011, 3, 4088–4093.
- 15 Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338, 643–647.
- 16 Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319.
- 17 Sung, H.; Ahn, N.; Jang, M. S.; Lee, J. K.; Yoon, H.; Park, N. G.; Choi, M. Transparent conductive oxide-free graphene-based perovskite solar cells with over 17% efficiency. Adv. Energy Mater. 2016, 6, 1501873.
- 18 Bi, D.; Yi, C.; Luo, J.; Décoppet, J. D.; Zhang, F.; Zakkeeruddin, S. M.; Li, X.; Hagfeldt, A.; Grätzel, M. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 2016, 1, 16142.
- 19 Jeon, N. J.; Na, H.; Jung, E. H.; Yang, T. Y.; Lee, Y. G.; Kim, G.; Shin, H. W.; Seok, S.; Lee, J.; Seo, J. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat. Energy 2018, 3, 682–689.
- 20 Jeong, M.; Choi, I.; Go, E.; Cho, Y.; Kim, M.; Lee, B.; Jeong, S.; Jo, Y.; Choi, H.; Lee, J.; Bae, J. H.; Kwak, S.; Kim, D.; Yang, C. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science 2020, 369, 1615–1620.
- 21 Kim, M.; Jeong, J.; Lu, H.; Lee, T. K.; Eickemeyer, F. T.; Liu, Y.; Choi, I.; Choi, S.; Jo, Y.; Kim, H. B.; Mo, S. I.; Kim, Y. K.; Lee, H.; An, N. G.; Cho, S.; Tress, W. R.; Zakeeruddin, S. M.; Hagfeldt, A.; Kim, J.; Grätzel, M.; Kim, D. S. Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells. Science 2022, 375, 302–306.
- 22 Zhang, K.; Wang, Z.; Wang, G.; Wang, J.; Li, Y.; Qian, W.; Zheng, S.; Xiao, S.; Yang, S. A prenucleation strategy for ambient fabrication of perovskite solar cells with high device performance uniformity. Nat. Commun. 2020, 11, 1006.
- 23
Ghani, I. B. A.; Khalid, M.; Hussain, M. I.; Hussain, M. M.; Ashral, R.; Wang, J. Recent advancement in perovskite solar cell with imidazole additive. Mater. Sci. Semicond. Proc. 2022, 148, 106788.
10.1016/j.mssp.2022.106788 Google Scholar
- 24 Asuo, I. M.; Gedamu, D.; Doumom, N. Y.; Ka, I.; Pignolet, A.; Cloutier, S. G.; Nechache, R. Ambient condition-processing strategy for improved air-stability and efficiency in mixed-cation perovskite solar cells. Mater. Adv. 2020, 1, 1866–1876.
- 25 Yin, J.; Cao, J.; He, X.; Yuan, S.; Sun, S.; Li, J.; Zheng, N.; Lin, L. Improved stability of perovskite solar cells in ambient air by controlling the mesoporous layer. J. Mater. Chem. A 2015, 3, 16860–16866.
- 26 Xu, X.; Yu, L.; Peng, Q. Recent advances in wide bandgap polymer donors and their applications in organic solar cells. Chin. J. Chem. 2021, 39, 243–254.
- 27 Gao, B.; Yao, H.; Hong, L.; Hou, J.; Efficient organic solar cells with a high open-circuit voltage of 1.34 V. Chin. J. Chem. 2019, 37, 1153–1157.
- 28 Kalam, A.; Al-Sehemi, A. G.; Verma, D.; Tripathi, B.; Kumar, M. Study of transport and recombination mechanism in hole transporter free perovskite solar cell. Mater. Res. Express 2018, 5, 105508.
- 29 Wang, Y.; Mahmoudi, T.; Rho, W. Y.; Hahn, Y. B. Fully-ambient-air and antisolvent-free-processed stable perovskite solar cells with perovskite-based composites and interface engineering. Nano Energy 2019, 64, 103964.
- 30 Wu, K. L.; Kogo, A.; Sakai, N.; Ikegami, M.; Miyasaka, T. High efficiency and robust performance of organo lead perovskite solar cells with large grain absorbers prepared in ambient air conditions. Chem. Lett. 2015, 44, 321–323.
- 31 Jeong, B.; Cho, S. M.; Cho, S. H.; Lee, J. H.; Hwang, I.; Hwang, S. K.; Cho, J.; Lee, T. W.; Park, C. Humidity controlled crystallization of thin CH3NH3PbI3 films for high performance perovskite solar cell. Phys. Status Solidi. Rapid Res. Lett. 2016, 10, 381–387.
- 32 Li, N.; Zhu, Z.; Dong, Q.; Li, J.; Yang, Z.; Chueh, C. C.; Jen, A.; Wang, L. Enhanced moisture stability of cesium-containing compositional perovskites by a feasible interfacial engineering. Adv. Mater. Interfaces 2017, 4, 1700598.
- 33 Xu, Y.; Zhu, L.; Shi, J.; Xu, X.; Xiao, J.; Dong, J.; Wu, H.; Luo, Y.; Li, D.; Meng, Q. The effect of humidity upon the crystallization process of two-step spin-coated organic-inorganic perovskites. ChemPhysChem 2016, 17, 112–118.
- 34 Ko, H. S.; Lee, J. W.; Park, N. G. 15.76% efficiency perovskite solar cells prepared under high relative humidity: importance of PbI2 morphology in two-step deposition of CH3NH3PbI3. J. Mater. Chem. A 2015, 3, 8808–8815.
- 35 Tai, Q.; You, P.; Sang, H.; Liu, Z.; Hu, C.; Chan, H. L.; Yan, F. Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity. Nat. Commun. 2016, 7, 11105.
- 36 Le, T. S.; Saranin, D.; Gostishchev, P.; Ermanova, I. Komaricheva, T.; Luchnikov, L.; Di Carlo, A. All-slot-die-coated inverted perovskite solar cells in ambient conditions with chlorine additives. Solar RRL 2021, 6, 2100807.
- 37 Frost, J. M.; Butler, K. T.; Brivio, F.; Hendon, C. H.; Schilfgaarde, M.; Walsh, A. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 2014, 14, 2584–2590.
- 38 Han, Y.; Meyer, S.; Dkhissi, Y.; Weber, K.; Pringle, J. M.; Bach, U.; Spiccia, L.; Cheng, Y. B. Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J. Mater Chem. A 2015, 3, 8139–8147.
- 39 Han, Y.; Meyer, S.; Dkhissi, Y.; Weber, K.; Pringle, J. M.; Bach, U.; Spiccia, L.; Cheng, Y. B. Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J. Mater. Chem. A 2015, 3, 8139–8147.
- 40 Rolston, N.; Scheideler, W. J.; Flick, A. C.; Zhao, O.; Woodhouse, M.; Dauskardt, R. H. Rapid open-air fabrication of perovskite solar modules. Joule 2020, 4, 2675–2692.
- 41 Meng, X.; Xing, Z.; Hu, X.; Chen, Y. Large-area flexible organic solar cells: printing technologies and modular design. Chinese J. Polym. Sci. 2022, 40, 1522–1566.
- 42 Xu, G.; Hu, X.; Liao, X.; Chen, Y. Bending-stability interfacial layer as dual electron transport layer for flexible organic photovoltaics. Chinese J. Polym. Sci. 2021, 39, 1441–1447.
- 43 Berhe, T.; Su, W. N.; Chen, C. H.; Pan, C. J.; Cheng, J. H.; Chen, H. M.; Tsai, M. C.; Chen, L. Y.; Dubale, A.; Hwang, B. J. Organometal halide perovskite solar cells: degradation and stability. Energy Environ. Sci. 2016, 9, 323–356.
- 44 Wang, Q.; Dong, Q.; Li, T.; Gruverman, A.; Huang, J. Thin insulating tunneling contacts for efficient and water-resistant perovskite solar cells. Adv. Mater. 2016, 28, 6734–6739.
- 45 Wozny, S.; Yang, M.; Nardes, A. M.; Mercado, C. C.; Ferrere, S.; Reese, M. O.; Zhou, W.; Zhu, K. Controlled humidity study on the formation of higher efficiency formamidinium lead triiodide-based solar cells. Chem. Mater. 2015, 27, 4814–4820.
- 46 Mohamad Noh, M.; Arzaee, N.; Mumthas, I.; Mohamed, N.; Farhana, S.; Nasir, S.; Safaei, J.; Yusoff, A.; Nazeeruddin, M.; Teridi, M. High-humidity processed perovskite solar cells. J. Mater. Chem. A 2020, 8, 10481–10518.
- 47 Dong, Q.; Shang, W.; Yu, X.; Yin, Y.; Jiang, C.; Feng, Y.; Bian, J.; Song, B.; Jin, S.; Zhou, Y.; Wang, L.; Shi, Y. Critical role of organoamines in the irreversible degradation of a metal halide perovskite precursor colloid: mechanism and inhibiting strategy. ACS Energy Lett. 2021, 7, 481–489.
- 48 Niu, T.; Lu, J.; Tang, M. C.; Barrit, D.; Smilgies, D. M.; Yang, Z.; Li, J.; Fan, Y.; Luo, T.; McCulloch, L.; Amassian, A.; Liu, S.; Zhao, K. High performance ambient-air-stable FAPbI3 perovskite solar cells with molecule-passivated Ruddlesden-Popper/3D heterostructured film. Energy Environ. Sci. 2018, 11, 3358–3366.
- 49 Li, Y.; Zhang, Z.; Zhou, Y.; Xie, L.; Gao, N.; Lu, X.; Gao, X.; Gao, J.; Shui, L.; Wu, S.; Liu, J. Enhanced performance and stability of ambient-processed CH3NH3PbI3-x(SCN)x planar perovskite solar cells by introducing ammonium salts. Appl. Surf. Sci. 2020, 513, 145790.
- 50 Liu, X.; He, J.; Wang, P.; Liu, Y.; Xiao, J.; Ku, Z.; Peng, Y.; Huang, F.; Cheng, Y. B.; Zhong, J. Fabrication of efficient and stable perovskite solar cells in high-humidity environment through trace-doping of large-sized cations. ChemSusChem 2019, 12, 2385–2392.
- 51 Lu, Y. B.; Cong, W. Y.; Guan, C.; Sun, H.; Xin, Y.; Wang, K.; Song, S. Light enhanced moisture degradation of perovskite solar cell material CH3NH3PbI3. J. Mater. Chem. A 2019, 7, 27469–27474.
- 52 Cheng, S.; Zhong, H. What happens when halide perovskites meet with water? J. Phys. Chem. Lett. 2022, 13, 2281–2290.
- 53 Zhu, W.; Chen, Q.; Yamaguchi, Y.; Zhao, F.; Hao, D.; Liu, X.; Dou, X. Perovskite solar cells prepared under infrared irradiation during fabrication process in air ambience. J. Mater. Sci. Mater. Electronics 2020, 31, 9535–9542.
- 54 Niu, G.; Guo, X.; Wang, L. Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 2015, 3, 8970–8980.
- 55 Wang, Q.; Chen, B.; Liu, Y.; Deng, Y.; Bai, Y.; Dong, Q.; Huang, J. Scaling behavior of moisture-induced grain degradation in polycrystalline hybrid perovskite thin films. Energy Environ. Sci. 2017, 10, 516–522.
- 56 Niu, G.; Li, W.; Meng, F.; Wang, L.; Dong, H.; Qiu, Y. Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J. Mater. Chem. A 2014, 2, 705–710.
- 57 Aristidou, N.; Eames, C.; Sanchez-Molina, I.; Bu, X.; Kosco, J.; Islam, M. S.; Haque, S. Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nat. Commun. 2017, 8, 15218.
- 58 Senocrate, A.; Acartürk, T.; Kim, G. Y.; Merkle, R.; Starke, U.; Grätzel, M.; Maier, J. Interaction of oxygen with halide perovskites. J. Mater. Chem. A 2018, 6, 10847–10855.
- 59 Cheng, Y.; Xu, X.; Xie, Y.; Li, H. J.; Qing, J.; Ma, C.; Lee, C. S.; So, F.; Tsang, S. W. 18% high-efficiency air-processed perovskite solar cells made in a humid atmosphere of 70% RH. Solar RRL 2017, 1, 1700097.
- 60 Hovish, M. Q.; Rolston, N.; Brüning, K.; Hilt, F.; Tassone, C.; Dauskardt, R. H. Crystallization kinetics of rapid spray plasma processed multiple cation perovskites in open air. J. Mater. Chem. A 2020, 8, 169–176.
- 61 Aristidou, N.; Eames, C.; Sanchez-Molina, I.; Bu, X.; Kosco, J.; Islam, M. S.; Haque, S. Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nat. Commun. 2017, 8, 15218.
- 62 Zhao, J.; Deng, Y.; Wei, H.; Zheng, X.; Yu, Z.; Shao, Y.; Shield, J. E.; Huang, J. Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Sci. Adv. 2017, 3, 5616.
- 63 Lim, V. J. Y.; Ulatowski, A. M.; Kamaraki, C.; Klug, M. T.; Perez, L.; Johnston, M. B.; Herz, L. M. Air-degradation mechanisms in mixed lead-tin halide perovskites for solar cells. Adv. Energy Mater. 2022, 2200847.
- 64 Senocrate, A.; Acartürk, T.; Kim, G. Y.; Merkle, R.; Starke, U.; Grätzel, M.; Maier, J. Interaction of oxygen with halide perovskites. J. Mater. Chem. A 2018, 6, 10847–10855.
- 65 Conings, B.; Drijkoningen, J.; Gauquelin, N.; Babayigit, A.; Haen, D.; Olieslaeger, L.; Ethiragan, A.; Verbeeck, J.; Manca, J.; Mosconi, E.; Angelis, F.; Boyen, H. G. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater. 2015, 5, 1500477.
- 66 Divitini, G.; Cacovich, S.; Matteocci, F.; Cinà, L.; Carlo, A. D.; Ducati, C. In situ observation of heat-induced degradation of perovskite solar cells. Nat. Energy 2016, 1, 15012.
- 67 Bryant, D.; Aristidou, N.; Pont, S.; Sanchez-Molina, I.; Chotchunangatchaval, T.; Wheeler, S.; Durrant, J. R.; Haque, S. A. Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells. Energy Environ. Sci. 2016, 9, 1655–1660.
- 68 He, J.; Fang, W. H.; Long, R.; Prezhdo, O. V. Why oxygen increases carrier lifetimes but accelerates degradation of CH3NH3PbI3 under light irradiation: time-domain Ab initio analysis. J. Am. Chem. Soc. 2020, 142, 14664–14673.
- 69 Latini, A.; Gigli, G.; Ciccioli, A. A study on the nature of the thermal decomposition of methylammonium lead iodide perovskite, CH3NH3PbI3: an attempt to rationalise contradictory experimental results. Sustain. Energy Fuels 2017, 1, 1351–1357.
- 70 Leijtens, T.; Eperon, G. E.; Pathak, S.; Abate, A.; Lee, M. M.; Snaith, H. J. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat. Commun. 2013, 4, 2885.
- 71 Tang, X.; Brandl, M.; May, B.; Levchuk, L.; Hou, Y.; Richter, M.; Chen, H.; Chen, S.; Kahmann, S.; Osvet, A.; Maier, F.; Steinruck, H. S.; Hock, R.; Matt, G. J.; Brabec, C. Photoinduced degradation of methylammonium lead triiodide perovskite semiconductors. J. Mater. Chem. A 2016, 4, 15896–15903.
- 72 Wei, J.; Wang, Q.; Huo, J.; Gao, F.; Gan, Z.; Zhao, Q.; Li, H. Mechanisms and suppression of photoinduced degradation in perovskite solar cells. Adv. Energy Mater. 2020, 11, 2002326.
- 73 Wang, S.; Jiang, Y.; Juarez-Perez, E. J.; Ono, L. K.; Qi, Y. Accelerated degradation of methylammonium lead iodide perovskites induced by exposure to iodine vapour. Nat. Energy 2016, 2.16195.
- 74 Manshor, N. A.; Wali, Q.; Wong, K. K.; Muzakir, S. K.; Fakharuddin, A.; Schmidt-Mende, L.; Jose, R. Humidity versus photo-stability of metal halide perovskite films in a polymer matrix. Phys. Chem. Chem. Phys. 2016, 18, 21629–21639.
- 75 Zhou, Y.; You, L.; Wang, S.; Ku, Z.; Fan, H.; Schmidt, D.; Rusydi, A.; Chang, L.; Wang, L.; Ren, P.; Chen, L.; Yuan, G.; Chen, L.; Wang, J. Giant photostriction in organic-inorganic lead halide perovskites. Nat. Commun. 2016, 7, 11193.
- 76 Wang, Z.; Jin, J.; Zheng, Y.; Zhang, X.; Zhu, Z.; Zhou, Y.; Cui, X.; Li, J.; Shang, M.; Zhao, X.; Liu, S.; Tai, Q. Achieving efficient and stable perovskite solar cells in ambient air through non-halide engineering. Adv. Energy Mater. 2021, 11, 2102169.
- 77 Lai, X.; Li, W.; Gu, X.; Chen, H.; Zhang, Y.; Li, G.; Zhang, R.; Fan, D.; He, F.; Zheng, N.; Yu, J.; Chen, R.; Kyaw, A. K.; Sun, X. W. High-performance quasi-2D perovskite solar cells with power conversion efficiency over 20% fabricated in humidity-controlled ambient air. Chem. Eng. J. 2022, 427, 130949.
- 78 Cheng, Y.; So, F.; Tsang, S. W. Progress in air-processed perovskite solar cells: from crystallization to photovoltaic performance. Mater. Horiz. 2019, 6, 1611–1624.
- 79 Pathak, S.; Sepe, A.; Sadhanala, A.; Deschler, F.; Haghighirad, A.; Sakai, N.; Goedel, K. C.; Stranks, S. D.; Noel, N.; Price, M.; Huttner, S.; Hawkins, N. A.; Friend, R. H.; Steiner, U.; Snaith, H. J. Atmospheric influence upon crystallization and electronic disorder and its impact on the photophysical properties of organic–inorganic perovskite solar cells. ACS Nano 2015, 9, 2311–2320.
- 80 Gao, H.; Bao, C.; Li, F.; Yu, T.; Yang, J.; Zhu, W.; Zhou, X.; Fu, G.; Zou, Z. Nucleation and crystal growth of organic–inorganic lead halide perovskites under different relative humidity. ACS Appl. Mater. Interfaces 2015, 7, 9110–9117.
- 81 Heo, J. H.; Han, H. J.; Kim, D.; Ahn, T. K.; Im, S. H. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ. Sci. 2015, 8, 1602–1608.
- 82 Wang, G.; Liu, D.; Xiang, J.; Zhou, D.; Alameh, K.; Ding, B.; Song, Q. Efficient perovskite solar cell fabricated in ambient air using one-step spin-coating. RSC Adv. 2016, 6, 43299–43303.
- 83 Zhong, T.; Shi, L.; Hao, H.; Dong, J.; Tang, K.; Xu, X.; Hamukwaya, S. L.; Liu, H.; Xing, J. Simple Method of Dual Passivation with Efficiency Beyond 20% for Fabricating Perovskite Solar Cells in the Full Ambient Air. ACS Sustainable Chem. Eng. 2021, 9, 13010–13020.
- 84 Jokar, E.; Cheng, P. Y.; Li, C. Y.; Narra, S.; Shahbazi, S.; Diau, E. W.-G. Enhanced performance and stability of 3D/2D tin perovskite solar cells fabricated with a sequential solution deposition. ACS Energy Lett. 2021, 6, 485–492.
- 85 Liu, C.; Ding, W.; Zhou, X.; Gao, J.; Cheng, C.; Zhao, X.; Xu, B. Efficient and stable perovskite solar cells prepared in ambient air based on surface-modified perovskite layer. J. Phys. Chem. C 2017, 121, 6546–6553.
- 86 Mitzi, D. B.; Prikas, M. T.; Chondroudis, K. Thin film deposition of organic−inorganic hybrid materials using a single source thermal ablation technique. Chem. Mater. 1999, 11, 542–544.
- 87 Bu, L.; Liu, Z.; Zhang, M.; Li, W.; Zhu, A.; Cai, F.; Zhao, Z.; Zhou, Y. Semitransparent fully air processed perovskite solar cells. ACS Appl. Mater. Interfaces 2015, 7, 17776–17781.
- 88 Eze, V. O.; Seike, Y.; Mori, T. Synergistic effect of additive and solvent vapor annealing on the enhancement of MAPbI3 perovskite solar cells fabricated in ambient air. ACS Appl. Mater. Interfaces 2020, 12, 46837–46845.
- 89 Krishna, B. G.; Ghosh, D. S.; Tiwari, S. Progress in ambient air-processed perovskite solar cells: Insights into processing techniques and stability assessment. Sol. Energy 2021, 224, 1369–1395.
- 90 Duan, J.; Liu, Z.; Zhang, Y.; Liu, K.; He, T.; Wang, F.; Dai, J.; Zhou, P. Planar perovskite FAxMA1-xPbI3 solar cell by two-step deposition method in air ambient. Opt. Mater. 2018, 85, 55–60.
- 91 Liu, D.; Kelly, T. L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics 2014, 8, 133–138.
- 92 Eze, V. O.; Lei, B.; Mori, T. Air-assisted flow and two-step spin-coating for highly efficient CH3NH3PbI3 perovskite solar cells. Jpn. J. Appl. Phys. 2016, 55, 02BF08.
- 93 Li, X.; Zhang, Y.; Liu, G.; Zhang, Z.; Xiao, L.; Chen, Z.; Qu, B. Ionic Liquid as an Additive for Two-Step Sequential Deposition for Air-Processed Efficient and Stable Carbon-Based CsPbI2Br All-Inorganic Perovskite Solar Cells. ACS Appl. Energy Mater. 2021, 4, 13444–13449.
- 94 Bonomi, S.; Maarongiu, D.; Sestu, N.; Saba, M.; Patrini, M.; Bongiovanni, G.; Malavasi, L. Novel physical vapor deposition approach to hybrid perovskites: growth of MAPbI3 thin films by RF-magnetron sputtering. Sci. Rep. 2018, 8, 15388.
- 95 Leyden, M. R.; Jiang, Y.; Qi, Y. Chemical vapor deposition grown formamidinium perovskite solar modules with high steady state power and thermal stability. J. Mater. Chem. A 2016, 4, 13125–13132.
- 96 Tavakoli, M. M.; Gu, L.; Gao, Y.; Reckmeier, C.; He, J.; Rogach, A. L.; Yao, Y.; Fan, Z. Fabrication of efficient planar perovskite solar cells using a one-step chemical vapor deposition method. Sci. Rep. 2015, 5, 1–9.
- 97 Pistor, P.; Borchert, J.; Fränzel, W.; Csuk, R.; Scheer, R. Monitoring the phase formation of co-evaporated lead halide perovskite thin films by in situ X-ray diffraction. J. Phys. Chem. Lett. 2014, 5, 3308–3312.
- 98 Borchert, J.; Boht, H.; Fränzel, W.; Csuk, R.; Scheer, R.; Pistor, P. Structural investigation of co-evaporated methyl ammonium lead halide perovskite films during growth and thermal decomposition using different PbX2 (X = I, Cl) precursors. J. Mater. Chem. A 2015, 3, 19842–19849.
- 99 Lei, J.; Gao, F.; Wang, H.; Li, J.; Jiang, J.; Wu, X.; Gao, R.; Yang, Z.; Liu, S. Efficient planar CsPbBr3 perovskite solar cells by dual-source vacuum evaporation. Sol. Energy Mater. Sol. Cells 2018, 187, 1–8.
- 100 Casaluci, S.; Cina, L.; Pockett, A.; Kubiak, P. S.; Niemann, R. G.; Reale, A.; Cameron, P. J. A simple approach for the fabrication of perovskite solar cells in air. J. Power Sources 2015, 297, 504–510.
- 101 Sheng, R.; Ho-Baillie, A.; Huang, S.; Chen, S.; Wen, X.; Green, M. A. Methylammonium lead bromide perovskite-based solar cells by vapor-assisted deposition. J. Phys. Chem. C 2015, 119, 3545–3549.
- 102 Yin, J.; Qu, H.; Cao, J.; Tai, H.; Li, J.; Zheng, N. Vapor-assisted crystallization control toward high performance perovskite photovoltaics with over 18% efficiency in the ambient atmosphere. J. Mater. Chem. A 2016, 4, 13203–13210.
- 103 Ngqoloda, S.; Arendse, C. J.; Muller, T. F.; Miceli, P. F.; Guha, S.; Mostert, L.; Oliphant, C. J. Air-stable hybrid perovskite solar cell by sequential vapor deposition in a single reactor. ACS Appl. Energy Mater. 2020, 3, 2350–2359.
- 104 Yang, B.; Keum, J.; Ovchinnikova, O. S.; Belianinov, A.; Chen, S. Y.; Du, M. H.; Ivanov, I. N.; Rouleau, C. M.; Geohegan, D. B.; Xiao, K. Deciphering halogen competition in organometallic halide perovskite growth. J. Am. Chem. Soc. 2016, 138, 5028–5035.
- 105 Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H. S.; Wang, H. H.; Liu, Y.; Li, G.; Yang, Y. Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 2014, 136, 622–625.
- 106 Yang, M.; Zhou, Y.; Zeng, Y.; Jiang, C.; Padture, N. P.; Zhu, K. Square-centimeter solution-processed planar CH3NH3PbI3 perovskite solar cells with efficiency exceeding 15%. Adv. Mater. 2015, 27, 6363–6370.
- 107 Luo, P.; Liu, Z.; Xia, W.; Yuan, C.; Cheng, J.; Xu, C.; Lu, Y. Chlorine-conducted defect repairment and seed crystal-mediated vapor growth process for controllable preparation of efficient and stable perovskite solar cells. J. Mater. Chem. A 2015, 3, 22949–22959.
- 108 Rong, Y.; Hou, X.; Hu, Y.; Mei, A.; Liu, L.; Wang, P.; Han, H. Synergy of ammonium chloride and moisture on perovskite crystallization for efficient printable mesoscopic solar cells. Nat. Commun. 2017, 8, 14555.
- 109 Cheng, Y.; Xu, X.; Xie, Y.; Li, H. J.; Qing, J.; Ma, C.; Lee, C. S.; So, F.; Tsang, S. W. 18% high-efficiency air-processed perovskite solar cells made in a humid atmosphere of 70% RH. Solar RRL 2017, 1, 1700097.
- 110 Sveinbjörnsson, K.; Aitola, K.; Zhang, J.; Johansson, M. B.; Zhang, X.; Correa-Baena, J. P.; Hagfeldt, A.; Boschloo, G.; Johansson, E. M. Ambient air-processed mixed-ion perovskites for high-efficiency solar cells. J. Mater. Chem. A 2016, 4, 16536–16545.
- 111 Im, J. H.; Jang, I. H.; Pellet, N.; Grätzel, M.; Park, N. G. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat. Nanotechnol 2014, 9, 927–932.
- 112 Gong, L.; Yang, J.; Sheng, W.; Zhong, Y.; Su, Y.; Tan, L.; Chen, Y. Dual-resistance of ion migration and moisture erosion via hydrolytic crosslinking of siloxane functionalized poly (ionic liquids) for efficient and stable perovskite solar cells. CCS Chem. 2022, DOI:10.31635/ ccschem.022.202201871.
- 113 Zhou, J.; Wu, J.; Li, N.; Li, X.; Zheng, Y. Z.; Tao, X. Efficient all-air processed mixed cation carbon-based perovskite solar cells with ultra-high stability. J. Mater. Chem. A 2019, 7, 17594–17603.
- 114Singh, T; Miyasaka, T. Stabilizing the efficiency beyond 20% with a mixed cation perovskite solar cell fabricated in ambient air under controlled humidity. Adv. Energy Mater. 2018, 8, 1700677.
- 115 Salim, K. M.; Masi, S.; Gualdrón-Reyes, A. F.; Sánchez, R. S.; Barea, E. M. Kreĉmarová, M.; Sánchez-Royo, J. F.; Mora-Seró, I. Boosting long-term stability of pure formamidinium perovskite solar cells by ambient air additive assisted fabrication. ACS Energy Lett. 2021, 6, 3511–3521.
- 116 Weller, M. T.; Weber, O. J.; Frost, J. M.; Walsh, A. Cubic perovskite structure of black formamidinium lead iodide, α-[HC(NH2)2]PbI3, at 298 K. J. Phys. Chem. Lett. 2015, 6, 3209–3212.
- 117 Koh, T.; Fu, K.; Fang, Y.; Chen, S.; Sum, T. C. Mathews, N.; Mhaisalkar, S. G.; Boix, P. P.; Baikie, T. Formamidinium-containing metal-halide: an alternative material for Near-IR absorption perovskite solar cells. J. Phys. Chem. Lett. 2013, 118, 16458–16462.
- 118 Yang, T. Y.; Gregori, G.; Pellet, N.; Grätzel, M.; Maier, J. The significance of ion conduction in a hybrid organic-inorganic lead-iodide- based perovskite photosensitizer. Angew Chem. Int. Ed. 2015, 54, 7905–7910.
- 119 Deepa, M.; Salado, M.; Calio, L.; Kazim, S.; Shivaprasad, S. M.; Ahmad, S. Cesium power: low Cs+ levels impart stability to perovskite solar cells. Phys. Chem. Chem. Phys. 2017, 19, 4069–4077.
- 120 Luo, P.; Xia, W.; Zhou, S.; Sun, L.; Cheng, J.; Xu, C.; Lu, Y. Solvent engineering for ambient-air-processed, phase-stable CsPbI3 in perovskite solar cells. J. Phys. Chem. Lett. 2016, 7, 3603–3608.
- 121 Saliba, M.; Matsui, T.; Seo, J. Y.; Domanski, K.; Correa-Baena, J. P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A.; Grätzel, M. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 2016, 9, 1989–1997.
- 122 Qin, M.; Xue, H.; Zhang, H.; Hu, H.; Liu, K.; Li, Y.; Qin, Z.; Ma, J.; Zhu, H.; Yan, K.; Fang, G.; Li, G.; Jeng, U. S.; Brocks, G.; Tao, S.; Lu, X. Precise control of perovskite crystallization kinetics via sequential A-site doping. Adv. Mater. 2020, 32, 2004630.
- 123 Liu, Y.; Yang, Z.; Cui, D.; Ren, X.; Sun, J.; Liu, X.; Zhang, J.; Wei, Q.; Fan, H.; Yu, F.; Zhang, X.; Zhao, C.; Liu, S. Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: growth and characterization. Adv. Mater. 2015, 27, 5176–5183.
- 124 Noh, J. H.; Im, S.; Heo, J.; Mandal, T. N.; Seok, S. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 2013, 13, 1764–1769.
- 125 Buin, A.; Comin, R.; Xu, J.; Ip, A. H.; Sargent, E. H. Halide-dependent electronic structure of organolead perovskite materials. Chem. Mater. 2015, 27, 4405–4412.
- 126 Saidaminov, M. I.; Kim, J.; Jain, A.; Quintero-Bermudez, R.; Tan, H.; Long, G.; Tan, F.; Johnston, A.; Zhao, Y.; Voznyy, O.; Sargent, E. H. Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nat. Energy 2018, 3, 648–654.
- 127 Zhang, Z.; Zhou, Y.; Cai, Y.; Liu, H.; Qin, Q.; Lu, X.; Gao, X.; Shui, L.; Wu, S.; Liu, J. M. Efficient and stable CH3NH3PbI3-x(SCN)x planar perovskite solar cells fabricated in ambient air with low-temperature process. J. Power Sources 2018, 377, 52–58.
- 128 Rong, Y.; Hou, X.; Hu, Y.; Mei, A.; Liu, L.; Wang, P.; Han, H. Synergy of ammonium chloride and moisture on perovskite crystallization for efficient printable mesoscopic solar cells. Nat. Commun. 2017, 8, 14555.
- 129 Yang, Z.; Chueh, C. C.; Liang, P. W.; Crump, M.; Lin, F.; Zhu, Z.; Jen, A. K. Y. Effects of formamidinium and bromide ion substitution in methylammonium lead triiodide toward high-performance perovskite solar cells. Nano Energy 2016, 22, 328–337.
- 130 Li, T.; Pan, Y.; Wang, Z.; Xia, Y.; Chen, Y.; Huang, W. Additive engineering for highly efficient organic–inorganic halide perovskite solar cells: recent advances and perspectives. J. Mater. Chem. A 2017, 5, 12602–12652.
- 131 Chen, H.; Chen, Y.; Zhang, T.; Liu, X.; Wang, X.; Zhao, Y. Advances to high-performance black-phase FAPbI3 perovskite for efficient and stable photovoltaics. Small Structures 2021, 2, 2000130.
- 132 Wang, L.; Zhang, Z.; Wang, B.; Zhang, J. Fabrication of perovskite uniform film in air via introduction of aniline cations. ChemistrySelect 2018, 3, 7023–7029.
- 133 Duan, C.; Cui, J.; Zhang, M.; Han, Y.; Yang, S.; Zhao, H.; Bian, H.; Yao, J.; Zhao, K.; Liu, Z.; Liu, S. Precursor engineering for ambient-compatible antisolvent-free fabrication of high-efficiency CsPbI2Br perovskite solar cells. Adv. Energy Mater. 2020, 10, 2000691.
- 134 Huang, Y.; Li, Y.; Lim, E.; Kong, T.; Zhang, Y.; Song, J.; Hagfeldt, A.; Bi, D. Stable layered 2D perovskite solar cells with an efficiency of over 19% via multifunctional interfacial engineering. J. Am. Chem. Soc. 2021, 143, 3911–3917.
- 135 Bu, T.; Wu, L.; Liu, X.; Yang, X.; Zhou, P.; Yu, X.; Qin, T.; Shi, J.; Wang, S.; Li, S.; Ku, Z.; Peng, Y.; Huang, F.; Meng, Q.; Cheng, Y. B.; Zhong, J. Synergic interface optimization with green solvent engineering in mixed perovskite solar cells. Adv. Energy Mater. 2017, 7, 1700576.
- 136 Jung, K.; Oh, K.; Kim, D.; Choi, J.; Kim, K.; Lee, M. J. Ambient-air fabrication of stable mixed cation perovskite planar solar cells with efficiencies exceeding 22% using a synergistic mixed antisolvent with complementary properties. Nano Energy 2021, 89, 106387.
- 137 Gedamu, D.; Asuo, I. M.; Benetti, D.; Basti, M.; Ka, I.; Cloutier, S. G. Rosei, F.; Nechache, R. Solvent-antisolvent ambient processed large grain size perovskite thin films for high-performance solar cells. Sci. Rep. 2018, 8, 12885.
- 138 Zhao, P.; Kim, B.; Ren, X.; Lee, D.; Bang, G.; Jeon, J.; Kim, W.; Jung, H. Antisolvent with an ultrawide processing window for the one-step fabrication of efficient and large-area perovskite solar cells. Adv. Mater. 2018, 30, 1802763.
- 139 Angmo, D.; Peng, X.; Seeber, A.; Zuo, C.; Gao, M.; Hou, Q.; Yuan, J.; Zhang, Q.; Cheng, Y. B.; Vak, D. Controlling homogenous spherulitic crystallization for high-efficiency planar perovskite solar cells fabricated under ambient high-humidity conditions. Small 2019, 15, 1904422.
- 140 Chen, W. H.; Qiu, L.; Zhuang, Z.; Song, L.; Du, P.; Xiong, J.; Ko, F. Simple fabrication of perovskite solar cells with enhanced efficiency, stability, and flexibility under ambient air. J. Power Sources 2019, 442, 227216.
- 141 Xiao, M.; Huang, F.; Huang, W.; Dkhissi, Y.; Zhu, Y.; Etheridge, J.; Gray-Weale, A.; Bach, U.; Cheng, Y. B.; Spiccia, L. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem. 2014, 53, 9898–9903.
- 142 Eze, V. O.; Mori, T. Enhanced photovoltaic performance of planar perovskite solar cells fabricated in ambient air by solvent annealing treatment method. Jpn. J. Appl. Phys. 2016, 55, 122301.
- 143 Wang, F. Zhang, T.; Wang, Y.; Liu, D.; Zhang, P.; Chen, H.; Ji, L.; Chen, L.; Chen, Z.; Wu, J.; Liu, X.; Li, Y.; Li, S. Steering the crystallization of perovskites for high-performance solar cells in ambient air. J. Mater. Chem. A 2019, 7, 12166–12175.
- 144 Yang, F.; Kapil, G.; Zhang, P.; Hu, Z.; Kamarudin, M. A.; Ma, T.; Hayase, S. Dependence of acetate-based antisolvents for high humidity fabrication of CH3NH3PbI3 perovskite devices in ambient atmosphere. ACS Appl. Mater. Interfaces 2018, 10, 16482–16489.
- 145 Yang, Z.; Pan, J.; Liang, Y.; Li, Q.; Xu, D. Ambient air condition for room-temperature deposition of MAPbI3 films in highly efficient solar cells. Small 2018, 14, 1802240.
- 146 Zhang, W.; Li, Y.; Liu, X.; Tang, D.; Li, X.; Yuan, X. Ethyl acetate green antisolvent process for high-performance planar low-temperature SnO2-based perovskite solar cells made in ambient air. Chem. Eng. J. 2020, 379, 122298.
- 147 Zhang, M.; Wang, Z.; Zhou, B.; Jia, X.; Ma, Q.; Yuan, N.; Zheng, X.; Ding, J.; Zhang, W. H. Green anti-solvent processed planar perovskite solar cells with efficiency beyond 19%. Solar RRL 2018, 2, 1700213.
- 148 Xu, X.; Ma, C.; Xie, Y. M.; Cheng, Y.; Tian, Y.; Li, M.; Ma, Y.; Lee, C. S.; Tsang, S. W. Air-processed mixed-cation Cs0.15FA0.85PbI3 planar perovskite solar cells derived from a PbI2-CsI-FAI intermediate complex. J. Mater. Chem. A 2018, 6, 7731–7740.
- 149 Wang, G.; Liu, C.; Kong, W.; Chen, H.; Li, D.; Amini, A.; Xu, B.; Cheng, C. Liberating researchers from the glovebox: a universal thermal radiation protocol toward efficient fully air-processed perovskite solar cells. Solar RRL 2019, 3, 1800324.
- 150 Bae, I. G.; Park, B. All-self-metered solution-coating process in ambient air for the fabrication of efficient, large-area, and semitransparent perovskite solar cells. Sustain. Energy Fuels 2020, 4, 3115–3128.
- 151 Ciro, J.; Mejí-Escobar, M. A.; Jaramillo, F. Slot-die processing of flexible perovskite solar cells in ambient conditions. Solar Energy 2017, 150, 570–576.
- 152 Mohamad, D. K.; Griffin, J.; Bracher, C.; Barrows, A. T.; Lidzey, D. G. Spray-cast multilayer organometal perovskite solar cells fabricated in air. Adv. Energy Mater. 2016, 6, 1600994
- 153 Zuo, C.; Vak, D.; Angmo, D.; Ding, L.; Gao, M. One-step roll-to-roll air processed high efficiency perovskite solar cells. Nano Energy 2018, 46, 185–192.
- 154 Ding, J.; Han, Q.; Ge, Q. Q.; Liu, J.; Mitzi, D. B.; Hu, J. Fully air-bladed high-efficiency perovskite photovoltaics. Joule 2019, 3, 402–416.