Fluorescent Columnar Liquid-Crystalline Polymers: Synthesis, Mesomorphic Behaviors and Tunable Emission Wavelengths†
Bin Mu
Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129 China
Search for more papers by this authorZhelin Zhang
Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129 China
Search for more papers by this authorYu Zhao
Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129 China
Search for more papers by this authorXiangnan Hao
Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129 China
Search for more papers by this authorCorresponding Author
Wei Tian
Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129 China
E-mail: [email protected]Search for more papers by this authorBin Mu
Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129 China
Search for more papers by this authorZhelin Zhang
Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129 China
Search for more papers by this authorYu Zhao
Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129 China
Search for more papers by this authorXiangnan Hao
Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129 China
Search for more papers by this authorCorresponding Author
Wei Tian
Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129 China
E-mail: [email protected]Search for more papers by this author† Dedicated to the Special Issue of Polymer Synthesis.
Main observation and conclusion
Fluorescent columnar liquid-crystalline polymers have attracted intensive attention due to their unique features that can be applied in many fields. However, the utilization of molecular engineering to achieve efficient fluorescence tuning has rarely been resolved. Herein, we report a series of liquid-crystalline polymers with α-cyanostilbene pendants attaching to polymethacrylate backbone by variant length ethylene glycol spacers, that assemble into hexagonal columnar mesophases and exhibit efficient fluorescence emission. Both the columnar ordering and the emission wavelength can be tuned just by altering the length of flexible spacers. With an elongation of the spacer, the columnar ordering and dimensions increased, and the fluorescence emission blue-shifted gradually. With good correlation of molecular design, columnar structure and fluorescence property, this study is expected to augment the understanding of spacer length influence in liquid-crystalline polymers and provide a guidance for the design and development of novel functional polymer materials.
Supporting Information
Filename | Description |
---|---|
cjoc202100051-sup-0001-Supinfo.pdfPDF document, 942.5 KB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Woehrle, T.; Wurzbach, I.; Kirres, J.; Kostidou, A.; Kapernaum, N.; Litterscheidt, J.; Haenle, J. C.; Staffeld, P.; Baro, A.; Giesselmann, F.; Laschat, S. Discotic Liquid Crystals. Chem. Rev. 2016, 116, 1139–1241.
- 2 Sergeyev, S.; Pisula, W.; Geerts, Y. H. Discotic Liquid Crystals: A New Generation of Organic Semiconductors. Chem. Soc. Rev. 2007, 36, 1902–1929.
- 3 Wu, J.; Pisula, W.; Müllen, K. Graphenes as Potential Material for Electronics. Chem. Rev. 2007, 107, 718–747.
- 4 Kato, T.; Yoshio, M.; Ichikawa, T.; Soberats, B.; Ohno, H.; Funahashi, M. Transport of ions and electrons in nanostructured liquid crystals. Nat. Rev. Mater. 2017, 2, 17001.
- 5 Zhao, R.; Zhao, T.; Jiang, X.; Liu, X.; Shi, D.; Liu, C.; Yang, S.; Chen, E.-Q. Thermoplastic High Strain Multishape Memory Polymer: Side-Chain Polynorbornene with Columnar Liquid Crystalline Phase. Adv. Mater. 2017, 29, 1605908.
- 6 Fleischmann, E.-K.; Zentel, R. Liquid-Crystalline Ordering as a Concept in Materials Science: From Semiconductors to Stimuli-Responsive Devices. Angew. Chem. Int. Ed. 2013, 52, 8810–8827.
- 7 Tschierske, C. Development of Structural Complexity by Liquid-Crystal Self-assembly. Angew. Chem. Int. Ed. 2013, 52, 8828–8878.
- 8 Kato, T.; Uchida, J.; Ichikawa, T.; Sakamoto, T. Functional Liquid Crystals towards the Next Generation of Materials. Angew. Chem. Int. Ed. 2018, 57, 4355–4371.
- 9 Bisoyi, H. K.; Li, Q. Stimuli Directed Alignment of Self-Organized One-Dimensional Semiconducting Columnar Liquid Crystal Nanostructures for Organic Electronics. Prog. Mater. Sci. 2019, 104, 1–52.
- 10
Kumar, S. Chemistry of Discotic Liquid Crystals: From Monomers to Polymers, CRC, Boca Raton, FL, 2010.
10.1201/b10457 Google Scholar
- 11 Mu, B.; Wu, B.; Pan, S.; Fang, J.; Chen, D. Hierarchical Self-Organization and Uniaxial Alignment of Well Synthesized Side-Chain Discotic Liquid Crystalline Polymers. Macromolecules 2015, 48, 2388–2398.
- 12 Mu, B.; Pan, S.; Bian, H.; Wu, B.; Fang, J.; Chen, D. Well-Organized Columnar Superlattices via Positive Coupling between Polymer Backbone and Discotic Side Groups. Macromolecules 2015, 48, 6768–6780.
- 13 Mu, B.; Hao, X.; Chen, J.; Li, Q.; Zhang, C.; Chen, D. Discotic columnar liquid-crystalline polymer semiconducting materials with high charge-carrier mobility via rational macromolecular engineering. Polym. Chem. 2017, 8, 3286–3293.
- 14 Zhu, Y.-F.; Guan, X.-L.; Shen, Z.; Fan, X.-H.; Zhou, Q.-F. Competition and Promotion between Two Different Liquid-Crystalline Building Blocks: Mesogen-Jacketed Liquid-Crystalline Polymers and Triphenylene Discotic Liquid Crystals. Macromolecules 2012, 45, 3346–3355.
- 15 Yu, Z.-Q.; Lam, J. W. Y.; Zhao, K.; Zhu, C.-Z.; Yang, S.; Lin, J.-S.; Li, B. S.; Liu, J.-H.; Chen, E.-Q.; Tang, B. Z. Mesogen jacketed liquid crystalline polyacetylene containing triphenylene discogen: synthesis and phase structure. Polym. Chem. 2013, 4, 996–1005.
- 16 Zhou, Q. F.; Li, H. M.; Feng, X. D. Synthesis of liquid-crystalline polyacrylates with laterally substituted mesogens. Macromolecules 1987, 20, 233–234.
- 17 Chen, X.-F.; Shen, Z.; Wan, X.-H.; Fan, X.-H.; Chen, E.-Q.; Ma, Y.; Zhou, Q.-F. Mesogen-jacketed liquid crystalline polymers. Chem. Soc. Rev. 2010, 39, 3072–3101.
- 18 Rosen, B. M.; Wilson, C. J.; Wilson, D. A.; Peterca, M.; Imam, M. R.; Percec, V. Dendron-Mediated Self-Assembly, Disassembly, and Self- Organization of Complex Systems. Chem. Rev. 2009, 109, 6275–6540.
- 19 Sun, H.-J.; Zhang, S.; Percec, V. From structure to function via complex supramolecular dendrimer systems. Chem. Soc. Rev. 2015, 44, 3900–3923.
- 20 Zheng, J.-F.; Liu, X.; Chen, X.-F.; Ren, X.-K.; Yang, S.; Chen, E.-Q. Hemiphasmidic Side-Chain Liquid Crystalline Polymer: From Smectic C Phase to Columnar Phase with a Bundle of Chains as Its Building Block. ACS Macro Lett. 2012, 1, 641–645.
- 21 Liu, X.-Q.; Wang, J.; Yang, S.; Chen, E.-Q. Self-Organized Columnar Phase of Side-Chain Liquid Crystalline Polymers: To Precisely Control the Number of Chains Bundled in a Supramolecular Column. ACS Macro Lett. 2014, 3, 834–838.
- 22 Xu, Y.-S.; Shi, D.; Gu, J.; Lei, Z.; Xie, H.-L.; Zhao, T.-P.; Yang, S.; Chen, E.-Q. Synthesis and self-organization of azobenzene containing hemiphasmidic side-chain liquid-crystalline polymers with different spacer lengths. Polym. Chem. 2016, 7, 462–473.
- 23 Lin, C.; Ringsdorf, H.; Ebert, M.; Kleppinger, R.; Wendorff, J. H. Structural variations of liquid crystalline polymers with phasmidic-type mesogens. Liq. Cryst. 1989, 5, 1841–1847.
- 24 Percec, V.; Heck, J.; Ungar, G. Liquid-crystalline polymers containing mesogenic units based on half-disk and rodlike moieties. 5. Side- chain liquid-crystalline poly(methylsiloxanes) containing hemiphasmidic mesogens based on 4-[[3,4,5,-tris(alkan-1-yloxy)benzoyl]oxy]- 4'-[[p-(propan-1-yloxy)benzoyl]oxy]biphenyl groups. Macromolecules 1991, 24, 4957–4962.
- 25 Percec, V.; Heck, J. Liquid crystalline polymers containing mesogenic units based on half-disc and rod-like moieties. I. Synthesis and characterization of 4-(11-undecan-1-yloxy)-4’-[3,4,5-tri(p-n-dodecan-1- yloxybenzyloxy)benzoate]biphenyl side groups. J. Polym. Sci. Part A: Polym. Chem. 1991, 29, 591–597.
- 26 Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Aggregation-Induced Emission: Together We Shine, United We Soar! Chem. Rev. 2015, 115, 11718–11940.
- 27 Zhao, Z.; Zhang, H.; Lam, J. W. Y.; Tang, B. Z. Aggregation-Induced Emission: New Vistas at the Aggregate Level. Angew. Chem. Int. Ed. 2020, 50, 9888–9907.
- 28 Zhu, Y.; Zheng, M.; Tu, Y.; Chen, X.-F. Supramolecular Fluorescent Polymers Containing α-Cyanostilbene-Based Stereoisomers: Z/E-Isomerization Induced Multiple Reversible Switching. Macromolecules 2018, 51, 3487–3496.
- 29 Wu, Y.; Zhang, S.; Pei, J.; Chen, X.-F. Photochromic fluorescence switching in liquid crystalline polynorbornenes with α-cyanostilbene side-chains. J. Mater. Chem. C 2020, 8, 6461–6469.
- 30 Yang, M.; Liu, Z.; Li, X.; Yuan, Y.; Zhang, H. Influence of flexible spacer length on self-organization behaviors and photophysical properties of hemiphasmidic liquid crystalline polymers containing cyanostilbene. Eur. Polym. J. 2020, 123, 109459.
- 31 Yuan, Y.; Li, J.; He, L.; Liu, Y.; Zhang, H. Preparation and properties of side chain liquid crystalline polymers with aggregation-induced emission enhancement characteristics. J. Mater. Chem. C 2018, 6, 7119–7127.
- 32 Chen, Y.; Lu, P.; Yuan, Y.; Zhang, H. Preparation and property manipulation of high efficiency circularly polarized luminescent liquid crystal polypeptides. J. Mater. Chem. C 2020, 8, 13632–13641.
- 33 Guo, Y.; Shi, D.; Luo, Z.-W.; Xu, J.-R.; Li, M.-L.; Yang, L.-H.; Yu, Z.-Q.; Chen, E.-Q.; Xie, H.-L. High Efficiency Luminescent Liquid Crystalline Polymers Based on Aggregation-Induced Emission and “Jacketing” Effect: Design, Synthesis, Photophysical Property, and Phase Structure. Macromolecules 2017, 50, 9607–9616.
- 34 Luo, Z.-W.; Tao, L.; Zhong, C.-L.; Li, Z.-X.; Lan, K.; Feng, Y.; Wang, P.; Xie, H.-L. High-Efficiency Circularly Polarized Luminescence from Chiral Luminescent Liquid Crystalline Polymers with Aggregation- Induced Emission Properties. Macromolecules 2020, 53, 9758–9768.
- 35 Li, Q.; Li, X.; Wu, Z.; Sun, Y.; Fang, J.; Chen, D. Highly efficient luminescent side-chain polymers with short-spacer attached tetraphenylethylene AIEgens via RAFT polymerization capable of naked eye explosive detection. Polym. Chem. 2018, 9, 4150–4160.
- 36 Yuan, W. Z.; Yu, Z. Q.; Tang, Y.; Lam, J. W. Y.; Xie, N.; Lu, P.; Chen, E. Q.; Tang, B. Z. High Solid-State Efficiency Fluorescent Main Chain Liquid Crystalline Polytriazoles with Aggregation-Induced Emission Characteristics. Macromolecules 2011, 44, 9618–9628.
- 37 Meng, Z.; Fu, K.; Zhao, Y.; Zhang, Y.; Wei, Z.; Liu, Y.; Ren, X. K.; Yu, Z. Q. Aggregation-induced red-shifted emission and fluorescent patterning of poly(aryleneethynylene) with a lateral AIEgen substituent. J. Mater. Chem. C 2020, 8, 1010–1016.
- 38 Demus, D.; Goodby, J.; Gray, G. W.; Spiess, H. W.; Vill, V. Handbook of Liquid Crystals: High Molecular Weight Liquid Crystals, Volume 3, Wiley-VCH, Weinheim, Germany, 1998.
- 39
Wang, X.-J.; Zhou, Q.-F. Liquid Crystalline Polymers, World Scientific Publishing, Singapore, 2004.
10.1142/5309 Google Scholar
- 40 Yu, Z. Q.; Li, T. T.; Zhang, Z.; Liu, J. H.; Yuan, W. Z.; Lam, J. W. Y.; Yang, S.; Chen, E. Q.; Tang, B. Z. Phase Behaviors of Side-Chain Liquid Crystalline Polyacetylenes with Different Length of Spacer: Where Will the Decoupling Effect Appear? Macromolecules 2015, 48, 2886–2893.
- 41 Mu, B.; Wu, B.; Chen, D. Macromolecular Engineering on Triphenylene Based Discotic Side-chain Liquid Crystalline Polymers. Acta Polym. Sin. 2017, 1574–1590.
- 42 Guo, Y.; Shi, D.; Luo, Z. W.; Xu, J. R.; Li, M. L.; Yang, L. H.; Yu, Z. Q.; Chen, E. Q.; Xie, H. L. Macromolecules 2017, 50, 9607–9616.
- 43 Martínez-Abadía, M.; Giménez, R.; Ros, M. B. Self-Assembled α-Cyanostilbenes for Advanced Functional Materials. Adv. Mater. 2018, 30, 1704161.
- 44 Zhu, L.; Zhao, Y. Cyanostilbene-based intelligent organic optoelectronic materials. J. Mater. Chem. C 2013, 1, 1059–1065.
- 45 An, B.-K.; Gierschner, J.; Park, S. Y. π-Conjugated Cyanostilbene Derivatives: A Unique Self-Assembly Motif for Molecular Nanostructures with Enhanced Emission and Transport. Acc. Chem. Res. 2012, 45, 544–554.
- 46 Lin, S.; Gutierrez-Cuevas, K. G.; Zhang, X.; Guo, J.; Li, Q. Fluorescent Photochromic α-Cyanodiarylethene Molecular Switches: An Emerging and Promising Class of Functional Diarylethene. Adv. Funct. Mater. 2021, 31, 2007957.
- 47 Zhao, J.; Chi, Z.; Zhang, Y.; Mao, Z.; Yang, Z.; Ubba, E.; Chi, Z. Recent progress in the mechanofluorochromism of cyanoethylene derivatives with aggregation-induced emission. J. Mater. Chem. C 2018, 6, 6327–6353.
- 48 Percec, V.; Tomazos, D.; Heck, J.; Blackwell, H.; Ungar, G. Self-assembly of taper-shaped monoesters of oligo(ethylene oxide) with 3,4,5-tris(n-dodecan-1-yloxy)benzoic acid and of their polymethacrylates into tubular supramolecular architectures displaying a columnar hexagonal mesophase. J. Chem. Soc., Perkin Trans. 2 1994, 31–44.
- 49 Percec, V.; Schlueter, D.; Kwon, Y. K.; Blackwell, J.; Moeller, M.; Slangen, P. J. Dramatic Stabilization of a Hexagonal Columnar Mesophase Generated from Supramolecular and Macromolecular Columns by the Semifluorination of the Alkyl Groups of Their Tapered Building Blocks. Macromolecules 1995, 28, 8807–8818.
- 50 Percec, V.; Schlueter, D.; Ungar, G.; Cheng, S. Z. D.; Zhang, A. Hierarchical Control of Internal Superstructure, Diameter, and Stability of Supramolecular and Macromolecular Columns Generated from Tapered Monodendritic Building Blocks. Macromolecules 1998, 31, 1745–1762.
- 51 Mu, B.; Li, X.; Zhao, Y.; Quan, X.; Tian, W. Processing-Dependent Lamellar Polymorphism of Hyperbranched Liquid-Crystalline Polymer with Variable Light Emission. Macromolecules 2020, 53, 5720–5727.
- 52 Mu, B.; Zhao, Y.; Li, X.; Quan, X.; Tian, W. Enhanced Conductivity and Thermochromic Luminescence in Hydrogen Bond-Stabilized Columnar Liquid Crystals. ACS Appl. Mater. Interfaces 2020, 12, 9637–9645.