Synthesis of Phenanthridine and Quinoxaline Derivatives via Copper-Catalyzed Radical Cyanoalkylation of Cyclobutanone Oxime Esters and Vinyl Azides
Qi Liang
Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620 China
‡ These authors contributed equally to this work.
Search for more papers by this authorLong Lin
Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620 China
‡ These authors contributed equally to this work.
Search for more papers by this authorGuodong Li
Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620 China
Search for more papers by this authorCorresponding Author
Xianqiang Kong
School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou, Jiangsu, 213032 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Bo Xu
Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620 China
E-mail: [email protected]; [email protected]Search for more papers by this authorQi Liang
Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620 China
‡ These authors contributed equally to this work.
Search for more papers by this authorLong Lin
Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620 China
‡ These authors contributed equally to this work.
Search for more papers by this authorGuodong Li
Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620 China
Search for more papers by this authorCorresponding Author
Xianqiang Kong
School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou, Jiangsu, 213032 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Bo Xu
Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620 China
E-mail: [email protected]; [email protected]Search for more papers by this authorMain observation and conclusion
A copper-catalyzed radical cyclization of cyclobutanone oxime esters and vinyl azide is described. This method provides facile access to cyanoalkyl-substituted phenanthridines and quinoxalines with excellent isolated yields. Moreover, these reactions proceed under mild conditions with a board substrate scope and excellent functional group tolerance.
Supporting Information
Filename | Description |
---|---|
cjoc202100050-sup-0001-Supinfo.pdfPDF document, 3.9 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Stevens, N.; O'Connor, N.; Vishwasrao, H.; Samaroo, D.; Kandel, E. R.; Akins, D. L.; Drain, C. M.; Turro, N. J. Two Color RNA Intercalating Probe for Cell Imaging Applications. J. Am. Chem. Soc. 2008, 130, 7182–7183.
- 2 Dubost, E.; Dumas, N.; Fossey, C.; Magnelli, R.; Butt-Gueulle, S.; Ballandonne, C.; Caignard, D. H.; Dulin, F.; Sopkova de-Oliveira Santos, J.; Millet, P.; Charnay, Y.; Rault, S.; Cailly, T.; Fabis, F. Synthesis and structure-affinity relationships of selective high-affinity 5-HT(4) receptor antagonists: application to the design of new potential single photon emission computed tomography tracers. J. Med. Chem. 2012, 55, 9693–9707.
- 3 Cappoen, D.; Claes, P.; Jacobs, J.; Anthonissen, R.; Mathys, V.; Verschaeve, L.; Huygen, K.; De Kimpe, N. 1,2,3,4,8,9,10,11-octahydrobenzo[j]phenanthridine-7,12-diones as new leads against Mycobacterium tuberculosis. J. Med. Chem. 2014, 57, 2895–2907.
- 4 Naidu, K. M.; Nagesh, H. N.; Singh, M.; Sriram, D.; Yogeeswari, P.; Gowri Chandra Sekhar, K. V. Novel amide and sulphonamide derivatives of 6-(piperazin-1-yl)phenanthridine as potent Mycobacterium tuberculosis H37Rv inhibitors. Eur. J. Med. Chem. 2015, 92, 415–426.
- 5 Liu, R.; Huang, Z.; Murray, M. G.; Guo, X.; Liu, G. Quinoxalin-2(1H)-one derivatives as inhibitors against hepatitis C virus. J. Med. Chem. 2011, 54, 5747–5768.
- 6 Hussain, S.; Parveen, S.; Hao, X.; Zhang, S.; Wang, W.; Qin, X.; Yang, Y.; Chen, X.; Zhu, S.; Zhu, C.; Ma, B. Structure-activity relationships studies of quinoxalinone derivatives as aldose reductase inhibitors. Eur. J. Med. Chem. 2014, 80, 383–392.
- 7 Ke, Q.; Yan, G.; Yu, J.; Wu, X. Recent advances in the direct functionalization of quinoxalin-2(1H)-ones. Org. Biomol. Chem. 2019, 17, 5863–5881.
- 8 Pictet, A.; hubert, A. Ber. Dtsch. Chem. Ges. 1896, 29, 1182.
- 9 Guo, W. S.; Dou, Q.; Hou, J.; Wen, L. R.; Li, M. Synthesis of 6-Phosphorylated Phenanthridines by Mn(II)-Promoted Tandem Reactions of 2-Biaryl Isothiocyanates with Phosphine Oxides. J. Org. Chem. 2017, 82, 7015–7022.
- 10 Tang, C.; Yuan, Y.; Jiao, N. Metal-free nitrogenation of 2-acetylbiphenyls: expeditious synthesis of phenanthridines. Org. Lett. 2015, 17, 2206–2209.
- 11 McBurney, R. T.; Slawin, A. M.; Smart, L. A.; Yu, Y.; Walton, J. C. UV promoted phenanthridine syntheses from oxime carbonate derived iminyl radicals. Chem. Commun. 2011, 47, 7974–7976.
- 12 Pan, C.; Zhang, H.; Han, J.; Cheng, Y.; Zhu, C. Metal-free radical oxidative decarboxylation/cyclization of acyl peroxides and 2-isocyanobiphenyls. Chem. Commun. 2015, 51, 3786–3788.
- 13 Sripada, L.; Teske, J. A.; Deiters, A. Phenanthridine synthesis via [2+2+2] cyclotrimerization reactions. Org. Biomol. Chem. 2008, 6, 263–265.
- 14 Zhang, B.; Studer, A. Recent advances in the synthesis of nitrogen heterocycles via radical cascade reactions using isonitriles as radical acceptors. Chem. Soc. Rev. 2015, 44, 3505–3521.
- 15 Carrer, A.; Brion, J. D.; Messaoudi, S.; Alami, M. Palladium(II)-catalyzed oxidative arylation of quinoxalin-2(1H)-ones with arylboronic acids. Org. Lett. 2013, 15, 5606–5609.
- 16 Chen, D.; Wang, Z. J.; Bao, W. Copper-catalyzed cascade syntheses of 2H-benzo[b][1,4]thiazin-3(4H)-ones and quinoxalin-2(1H)-ones through capturing S and N atom respectively from AcSH and TsNH2. J. Org. Chem. 2010, 75, 5768–5771.
- 17 Sumunnee, L.; Pimpasri, C.; Noikham, M.; Yotphan, S. Persulfate-promoted oxidative C-N bond coupling of quinoxalinones and NH-sulfoximines. Org. Biomol. Chem. 2018, 16, 2697–2704.
- 18 Monika, M.; Selvakumar, S. Recent Developments in Direct C–H Functionalization of Quinoxalin-2(1H)-ones via Radical Addition Processes. Synthesis 2019, 51, 4113–4136.
- 19 Gao, M.; Li, Y.; Xie, L.; Chauvin, R.; Cui, X. Direct phosphonation of quinoxalin-2(1H)-ones under transition-metal-free conditions. Chem. Commun. 2016, 52, 2846–2849.
- 20 Hu, B.; DiMagno, S. G. Reactivities of vinyl azides and their recent applications in nitrogen heterocycle synthesis. Org. Biomol. Chem. 2015, 13, 3844–3855.
- 21 Fu, J.; Zanoni, G.; Anderson, E. A.; Bi, X. alpha-Substituted vinyl azides: an emerging functionalized alkene. Chem. Soc. Rev. 2017, 46, 7208–7228.
- 22 Khlebnikov, A. F.; Novikov, M. S. Recent advances in 2H-azirine chemistry. Tetrahedron 2013, 69, 3363–3401.
- 23 Hayashi, H.; Kaga, A.; Chiba, S. Application of Vinyl Azides in Chemical Synthesis: A Recent Update. J. Org. Chem. 2017, 82, 11981–11989.
- 24 Chiba, S. Cu–Rh Redox Relay Catalysts for Synthesis of Azaheterocycles via C–H Functionalization. Chem. Lett. 2012, 41, 1554–1559.
- 25 Liu, Z.-K.; Zhao, Q.-Q.; Gao, Y.; Hou, Y.-X.; Hu, X.-Q. Organic Azides: Versatile Synthons in Transition Metal-Catalyzed C(sp2)−H Amination/Annulation for N-Heterocycle Synthesis. Adv. Synth. Catal. 2021, 363, 411–424.
- 26 Mackay, E. G.; Studer, A. Electron-Catalyzed Fluoroalkylation of Vinyl Azides. Chem.-Eur. J. 2016, 22, 13455–13458.
- 27 Sun, X.; Yu, S. Visible-light-promoted iminyl radical formation from vinyl azides: synthesis of 6-(fluoro)alkylated phenanthridines. Chem. Commun. 2016, 52, 10898–10901.
- 28 Yang, J. C.; Zhang, J. Y.; Zhang, J. J.; Duan, X. H.; Guo, L. N. Metal-Free, Visible-Light-Promoted Decarboxylative Radical Cyclization of Vinyl Azides with N-Acyloxyphthalimides. J. Org. Chem. 2018, 83, 1598–1605.
- 29 Tang, J.; Sivaguru, P.; Ning, Y.; Zanoni, G.; Bi, X. Silver-Catalyzed Tandem C identical withC Bond Hydroazidation/Radical Addition/Cyclization of Biphenyl Acetylene: One-Pot Synthesis of 6-Methyl Sulfonylated Phenanthridines. Org. Lett. 2017, 19, 4026–4029.
- 30 Yang, J. C.; Zhang, J. J.; Guo, L. N. Copper-catalyzed oxidative cyclization of vinyl azides with benzylic Csp(3)-H bonds for the synthesis of substituted phenanthridines. Org. Biomol. Chem. 2016, 14, 9806–9813.
- 31 Mao, L.-L.; Zheng, D.-G.; Zhu, X.-H.; Zhou, A.-X.; Yang, S.-D. Visible-light-induced sulfonylation/cyclization of vinyl azides: one-pot construction of 6-(sulfonylmethyl)phenanthridines. Org. Chem. Front. 2018, 5, 232–236.
- 32 Wang, X.; Li, Y.; Qiu, G.; Wu, J. Synthesis of 6-(sulfonylmethyl)phenanthridines through a reaction of aryldiazonium tetrafluoroborates, sulfur dioxide, and vinyl azides. Org. Chem. Front. 2018, 5, 2555–2559.
- 33 Kong, X.; Liu, Y.; Lin, L.; Chen, Q.; Xu, B. Electrochemical synthesis of enaminones via a decarboxylative coupling reaction. Green Chem. 2019, 21, 3796–3801.
- 34 Fleming, F. F. Nitrile-containing natural products. Nat. Prod. Rep. 1999, 16, 597–606.
- 35 Fleming, F. F.; Yao, L.; Ravikumar, P. C.; Funk, L.; Shook, B. C. Nitrile- containing pharmaceuticals: efficacious roles of the nitrile pharmacophore. J. Med. Chem. 2010, 53, 7902–7917.
- 36 Martinkova, L.; Rucka, L.; Nesvera, J.; Patek, M. Recent advances and challenges in the heterologous production of microbial nitrilases for biocatalytic applications. World J. Microbiol. Biotechnol. 2017, 33, 8.
- 37 Bissember, A. C.; Gardiner, M. G.; Wierenga, T. S. α-Cyanocarbanion complexes and their application in synthesis. J. Organomet. Chem. 2018, 869, 213–226.
- 38 Fleming, F. F.; Zhang, Z. Cyclic nitriles: tactical advantages in synthesis. Tetrahedron 2005, 61, 747–789.
- 39 Fleming, F. F.; Wang, Q. Unsaturated Nitriles: Conjugate Additions of Carbon Nucleophiles to a Recalcitrant Class of Acceptors. Chem. Rev. 2003, 103, 2035–2077.
- 40 Yang, L.; Koh, S. L.; Sutton, P. W.; Liang, Z.-X. Nitrile reductase as a biocatalyst: opportunities and challenges. Catal. Sci. Technol. 2014, 4, 2871–2876.
- 41 Wang, M. X. Enantioselective biotransformations of nitriles in organic synthesis. Acc. Chem. Res. 2015, 48, 602–611.
- 42 Lopez, R.; Palomo, C. Cyanoalkylation: Alkylnitriles in Catalytic C-C Bond-Forming Reactions. Angew. Chem. Int. Ed. 2015, 54, 13170–13184.
- 43 Chu, X.-Q.; Ge, D.; Shen, Z.-L.; Loh, T.-P. Recent Advances in Radical-Initiated C(sp3)–H Bond Oxidative Functionalization of Alkyl Nitriles. ACS Catal. 2017, 8, 258–271.
- 44 Min, Q.-Q.; Li, N.; Chen, G.-L.; Liu, F. Copper-catalysed C(sp3)–N coupling initiated by selective C–C bond cleavage of cyclobutanone oxime esters. Org. Chem. Front. 2019, 6, 1200–1204.
- 45 Wang, P. Z.; Yu, X. Y.; Li, C. Y.; He, B. Q.; Chen, J. R.; Xiao, W. J. A photocatalytic iminyl radical-mediated C-C bond cleavage/addition/ cyclization cascade for the synthesis of 1,2,3,4-tetrahydrophenanthrenes. Chem. Commun. 2018, 54, 9925–9928.
- 46 He, B. Q.; Yu, X. Y.; Wang, P. Z.; Chen, J. R.; Xiao, W. J. A photoredox catalyzed iminyl radical-triggered C-C bond cleavage/addition/Kornblum oxidation cascade of oxime esters and styrenes: synthesis of ketonitriles. Chem. Commun. 2018, 54, 12262–12265.
- 47 Yu, X. Y.; Chen, J. R.; Wang, P. Z.; Yang, M. N.; Liang, D.; Xiao, W. J. A Visible-Light-Driven Iminyl Radical-Mediated C-C Single Bond Cleavage/Radical Addition Cascade of Oxime Esters. Angew. Chem. Int. Ed. 2018, 57, 738–743.
- 48 Yin, Z.; Rabeah, J.; Brückner, A.; Wu, X.-F. Gallic Acid-Promoted SET Process for Cyclobutanone Oximes Activation and (Carbonylative-)Alkylation of Olefins. ACS Catal. 2018, 8, 10926–10930.
- 49 Chen, J.; He, B. Q.; Wang, P. Z.; Yu, X. Y.; Zhao, Q. Q.; Chen, J. R.; Xiao, W. J. Photoinduced, Copper-Catalyzed Radical Cross-Coupling of Cycloketone Oxime Esters, Alkenes, and Terminal Alkynes. Org. Lett. 2019, 21, 4359–4364.
- 50 Zhang, W.; Yang, C.; Zhang, Z. P.; Li, X.; Cheng, J. P. Visible-Light- Triggered Cyanoalkylation of para-Quinone Methides and Its Application to the Synthesis of GPR40 Agonists. Org. Lett. 2019, 21, 4137–4142.
- 51 Zhang, J.; Li, X.; Xie, W.; Ye, S.; Wu, J. Photoredox-Catalyzed Sulfonylation of O-Acyl Oximes via Iminyl Radicals with the Insertion of Sulfur Dioxide. Org. Lett. 2019, 21, 4950–4954.
- 52 Zhang, J. Y.; Duan, X. H.; Yang, J. C.; Guo, L. N. Redox-Neutral Cyanoalkylation/Cyclization of Olefinic 1,3-Dicarbonyls with Cycloketone Oxime Esters: Access to Cyanoalkylated Dihydrofurans. J. Org. Chem. 2018, 83, 4239–4249.
- 53 Wu, J.; Zhang, J. Y.; Gao, P.; Xu, S. L.; Guo, L. N. Copper-Catalyzed Redox-Neutral Cyanoalkylarylation of Activated Alkenes with Cyclobutanone Oxime Esters. J. Org. Chem. 2018, 83, 1046–1055.
- 54 Xiao, T.; Huang, H.; Anand, D.; Zhou, L. Iminyl-Radical-Triggered C–C Bond Cleavage of Cycloketone Oxime Derivatives: Generation of Distal Cyano-Substituted Alkyl Radicals and Their Functionalization. Synthesis 2020, 52, 1585–1601.
- 55 Yu, X.-Y.; Zhao, Q.-Q.; Chen, J.; Xiao, W.-J.; Chen, J.-R. When Light Meets Nitrogen-Centered Radicals: From Reagents to Catalysts. Acc. Chem. Res. 2020, 53, 1066–1083.
- 56 Yu, X.-Y.; Chen, J.-R.; Xiao, W.-J. Visible Light-Driven Radical-Mediated C–C Bond Cleavage/Functionalization in Organic Synthesis. Chem. Rev. 2021, 121, 506–561.
- 57
Wang, P.; Zhao, Q.; Xiao, W.; Chen, J. Recent advances in visible-light photoredox-catalyzed nitrogen radical cyclization. Green Synth. Catal. 2020, 1, 42–51.
10.1016/j.gresc.2020.05.003 Google Scholar
- 58 Song, C. H.; Shen, X.; Yu, F.; He, Y. P.; Yu, S. Y. Generation and Application of Iminyl Radicals from Oxime Derivatives Enabled by Visible Light Photoredox Catalysis. Chin. J. Org. Chem. 2020, 40, 3748–3759.
- 59 Xiao, W.; Wu, J. Recent advances for the photoinduced CC bond cleavage of cycloketone oximes. Chin. Chem. Lett. 2020, 31, 3083–3094.
- 60 Tu, J.-L.; Tang, W.; Xu, W.; Liu, F. Iminyl-Radical-Promoted C–C Bond Cleavage/Heck-Like Coupling via Dual Cobaloxime and Photoredox Catalysis. J. Org. Chem. 2021, 86, 2929–2940.
- 61 Zhang, M.-M.; Li, S.-H.; Tu, J.-L.; Min, Q.-Q.; Liu, F. Metal-free iminyl radical-mediated C–C single bond cleavage/functionalization of redox-active oxime esters. Org. Chem. Front. 2020, 7, 622–627.
- 62 Tang, Y. Q.; Yang, J. C.; Wang, L.; Fan, M.; Guo, L. N. Ni-Catalyzed Redox-Neutral Ring-Opening/Radical Addition/Ring-Closing Cascade of Cycloketone Oxime Esters and Vinyl Azides. Org. Lett. 2019, 21, 5178–5182.
- 63 Yang, L.; Gao, P.; Duan, X.-H.; Gu, Y.-R.; Guo, L. N. Direct C–H Cyanoalkylation of Quinoxalin-2(1H)-ones via Radical C–C Bond Cleavage. Org. Lett. 2018, 20, 1034–1037.
- 64 Zhang, W.; Pan, Y. L.; Yang, C.; Chen, L.; Li, X.; Cheng, J. P. Metal-Free Direct C-H Cyanoalkylation of Quinoxalin-2(1H)-Ones by Organic Photoredox Catalysis. J. Org. Chem. 2019, 84, 7786–7795.
- 65 Zhao, B.; Kong, X.; Xu, B. Visible-light-driven cyanoalkylation of quinoxalinones using cyclobutanone oxime esters as the radical precursors. Tetrahedron Lett. 2019, 60, 2063–2066.