Ni2P Nanosheets: A High Catalytic Activity Platform for Electrochemical Detection of Acetaminophen
Ming Wei
Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Linfen, Shanxi, 041004 China
Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, 222000 China
Search for more papers by this authorCorresponding Author
Wenbo Lu
Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Linfen, Shanxi, 041004 China
E-mail: [email protected]; [email protected]Search for more papers by this authorGuoqin Liu
Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Linfen, Shanxi, 041004 China
Search for more papers by this authorYimin Jiang
Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Linfen, Shanxi, 041004 China
Search for more papers by this authorXuebo Liu
Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Linfen, Shanxi, 041004 China
Search for more papers by this authorLiwei Bai
Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Linfen, Shanxi, 041004 China
Search for more papers by this authorXiaowei Cao
Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001 China
Search for more papers by this authorJianfeng Jia
Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Linfen, Shanxi, 041004 China
Search for more papers by this authorCorresponding Author
Haishun Wu
Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Linfen, Shanxi, 041004 China
E-mail: [email protected]; [email protected]Search for more papers by this authorMing Wei
Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Linfen, Shanxi, 041004 China
Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, 222000 China
Search for more papers by this authorCorresponding Author
Wenbo Lu
Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Linfen, Shanxi, 041004 China
E-mail: [email protected]; [email protected]Search for more papers by this authorGuoqin Liu
Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Linfen, Shanxi, 041004 China
Search for more papers by this authorYimin Jiang
Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Linfen, Shanxi, 041004 China
Search for more papers by this authorXuebo Liu
Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Linfen, Shanxi, 041004 China
Search for more papers by this authorLiwei Bai
Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Linfen, Shanxi, 041004 China
Search for more papers by this authorXiaowei Cao
Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001 China
Search for more papers by this authorJianfeng Jia
Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Linfen, Shanxi, 041004 China
Search for more papers by this authorCorresponding Author
Haishun Wu
Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Linfen, Shanxi, 041004 China
E-mail: [email protected]; [email protected]Search for more papers by this authorMain observation and conclusion
Accurate determination of acetaminophen concentration is essential for studying the metabolic status of acetaminophen in clinical practice. In this study, nickel phosphide was used for electrochemical detection of acetaminophen for the first time. An electrochemical acetaminophen sensor based on Ni2P nanosheets was successfully constructed and the sensor showed many convincing properties: (a) a good linear range (0.5 μmol/L—4.5 mmol/L); (b) a moderate sensitivity (131.1 μA·mmol–1·L·cm–2); (c) a low detection limit (0.107 μmol/L). In addition, the sensor also showed excellent selectivity, robust stability and reliable repeatability. Further experiments demonstrate that the prepared sensor can be used for quantitative detection of acetaminophen in commercial medical drugs.
Supporting Information
Filename | Description |
---|---|
cjoc202100043-sup-0001-Supinfo.pdfPDF document, 1.1 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Wang, K.; Wu, C.; Wang, F.; Jing, N.; Jiang, G. Co/Co3O4 Nanoparticles Coupled with Hollow Nanoporous Carbon Polyhedrons for the Enhanced Electrochemical Sensing of Acetaminophen. ACS Sustainable Chem. Eng. 2019, 7, 18582–18592.
- 2 Pylypchuk, I. V.; Kessler, V. G.; Seisenbaeva, G. A. Simultaneous Removal of Acetaminophen, Diclofenac, and Cd(II) by Trametes versicolor Laccase Immobilized on Fe3O4/SiO2-DTPA Hybrid Nanocomposites. ACS Sustainable Chem. Eng. 2018, 6, 9979–9989.
- 3 Habibi, B.; Jahanbakhshi, M.; Pournaghi-Azar, M. H. Simultaneous determination of acetaminophen and dopamine using SWCNT modified carbon–ceramic electrode by differential pulse voltammetry. Electrochim. Acta 2011, 56, 2888–2894.
- 4 Chokkareddy, R.; Thondavada, N.; Bhajanthri, N. K.; Redhi, G. G. An amino functionalized magnetite nanoparticle and ionic liquid based electrochemical sensor for the detection of acetaminophen. Anal. Methods 2019, 11, 6204–6212.
- 5 Cernat, A.; Tertiş, M.; Săndulescu, R.; Bedioui, F.; Cristea, A.; Cristea, C. Electrochemical sensors based on carbon nanomaterials for acetaminophen detection: A review. Anal. Chim. Acta 2015, 886, 16–28.
- 6 Zhang, W.; Zong, L.; Liu, S.; Pei, S.; Zhang, Y.; Ding, X.; Jiang, B.; Zhang, Y. An electrochemical sensor based on electro-polymerization of caffeic acid and Zn/Ni-ZIF-8–800 on glassy carbon electrode for the sensitive detection of acetaminophen. Biosens. Bioelectron. 2019, 131, 200–206.
- 7 Lu, D.; Zhang, Y.; Wang, L.; Lin, S.; Wang, C.; Chen, X. Sensitive detection of acetaminophen based on Fe3O4 nanoparticles-coated poly(diallyldimethylammonium chloride)-functionalized graphene nanocomposite film. Talanta 2012, 88, 181–186.
- 8 Montaseri, H.; Forbes, P. B. C. Analytical techniques for the determination of acetaminophen: A review. TrAC-Trends Anal. Chem. 2018, 108, 122–134.
- 9 Lecoeur, M.; Rabenirina, G.; Schifano, N.; Odou, P.; Ethgen, S.; Lebuffe, G.; Foulon, C. Determination of acetaminophen and its main metabolites in urine by capillary electrophoresis hyphenated to mass spectrometry. Talanta 2019, 205, 120108.
- 10 Heydari, R. A New HPLC Method for the Simultaneous Determination of Acetaminophen, Phenylephrine, Dextromethorphan and Chlorpheniramine in Pharmaceutical Formulations. Anal. Lett. 2008, 41, 965–976.
- 11 Rhodes, H. J.; Denardo, J. J.; Bode, D. W.; Blake, M. I. Differentiating nonaqueous titration of aspirin, acetaminophen, and salicylamide mixtures. J. Pharm. Sci. 1975, 64, 1386–1388.
- 12 Erk, N. Application of derivative-differential UV spectrophotometry and ratio derivative spectrophotometric determination of mephenoxalone and acetaminophen in combined tablet preparation. J. Pharm. Biomed. Anal. 1999, 21, 429–437.
- 13 Ma, Y.; Tian, H.; Jin, Z.; Li, X.; Li, Y. Observation of the generation of peroxynitrite in mouse liver after acetaminophen overdose with a boronate-based ratiometric fluorescence probe. RSC Adv. 2019, 9, 6510–6514.
- 14 Kang, X.; Wang, J.; Wu, H.; Liu, J.; Aksay, I. A.; Lin, Y. A graphene- based electrochemical sensor for sensitive detection of paracetamol. Talanta 2010, 81, 754–759.
- 15 Wei, M.; Qiao, Y.; Zhao, H.; Liang, J.; Li, T.; Luo, Y.; Lu, S.; Shi, X.; Lu, W.; Sun, X. Electrochemical non-enzymatic glucose sensors: recent progress and perspectives. Chem. Commun. 2020, 56, 14553–14569.
- 16 Fu, Y.; Hao, H.; Liu, X.; Zheng, J. Electrochemical Sensor Based on AgNPs-NNH Nanocomposites for Hydrogen Peroxide Detection by Zero Current Potentiometry. Chin. J. Chem. 2018, 36, 1174–1178.
- 17 Yu, S.; Li, H.; Li, G.; Niu, L.; Liu, W.; Di, X. Reduced graphene oxide- supported gold dendrite for electrochemical sensing of acetaminophen. Talanta 2018, 184, 244–250.
- 18 Adhikari, B.-R.; Govindhan, M.; Schraft, H.; Chen, A. Simultaneous and sensitive detection of acetaminophen and valacyclovir based on two dimensional graphene nanosheets. J. Electroanal. Chem. 2016, 780, 241–248.
- 19 Wang, L.; Meng, T.; Fan, Y.; Chen, C.; Guo, Z.; Wang, H.; Zhang, Y. Electrochemical study of acetaminophen oxidation by gold nanoparticles supported on a leaf-like zeolitic imidazolate framework. J. Colloid Interface Sci. 2018, 524, 1–7.
- 20 Gholivand, M. B.; Amiri, M. Simultaneous detection of dopamine and acetaminophen by modified gold electrode with polypyrrole/ aszophloxine film. J. Electroanal. Chem. 2012, 676, 53–59.
- 21 Sun, M.; Liu, H.; Qu, J.; Li, J. Earth-Rich Transition Metal Phosphide for Energy Conversion and Storage. Adv. Energy Mater. 2016, 6, 1600087.
- 22 Wang, S.-F.; Xie, F.; Hu, R.-F. Carbon-coated nickel magnetic nanoparticles modified electrodes as a sensor for determination of acetaminophen. Sens. Actuators B Chem. 2007, 123, 495–500.
- 23 Ling, J.; Liu, Y.; Hao, G.; Zhang, X. Preparation of carbon-coated Co and Ni nanocrystallites by a modified AC arc discharge method. Mater. Sci. Eng. B 2003, 100, 186–190.
- 24 Babaei, A.; Sohrabi, M.; Taheri, A. R. Highly sensitive simultaneous determination of L-dopa and paracetamol using a glassy carbon electrode modified with a composite of nickel hydroxide nanoparticles/multi-walled carbon nanotubes. J. Electroanal. Chem. 2013, 698, 45–51.
- 25 Premlatha, S.; Ramesh Bapu, G. N. K. Fabrication of Co-Ni alloy nanostructures on copper foam for highly sensitive amperometric sensing of acetaminophen. J. Electroanal. Chem. 2018, 822, 33–42.
- 26 Zhang, H.; Hagen, D. J.; Li, X.; Graff, A.; Heyroth, F.; Fuhrmann, B.; Kostanovskiy, I.; Schweizer, S. L.; Caddeo, F.; Maijenburg, A. W.; Parkin, S.; Wehrspohn, R. B. Atomic Layer Deposition of Cobalt Phosphide for Efficient Water Splitting. Angew. Chem. Int. Ed. 2020, 59, 17172–17176.
- 27 Xu, S.; Zhao, H.; Li, T.; Liang, J.; Lu, S.; Chen, G.; Gao, S.; Asiri, A. M.; Wu, Q.; Sun, X. Iron-based phosphides as electrocatalysts for the hydrogen evolution reaction: recent advances and future prospects. J. Mater. Chem. A 2020, 8, 19729–19745.
- 28 Liu, T.; Liu, D.; Qu, F.; Wang, D.; Zhang, L.; Ge, R.; Hao, S.; Ma, Y.; Du, G.; Asiri, A. M.; Chen, L.; Sun, X. Enhanced Electrocatalysis for Energy-Efficient Hydrogen Production over CoP Catalyst with Nonelectroactive Zn as a Promoter. Adv. Energy Mater. 2017, 7, 1700020.
- 29 Zhang, Y.; Liu, Y.; Ma, M.; Ren, X.; Liu, Z.; Du, G.; Asiri, A. M.; Sun, X. A Mn-doped Ni2P nanosheet array: an efficient and durable hydrogen evolution reaction electrocatalyst in alkaline media. Chem. Commun. 2017, 53, 11048–11051.
- 30 Zhao, R.; Geng, Q.; Chang, L.; Wei, P.; Luo, Y.; Shi, X.; Asiri, A. M.; Lu, S.; Wang, Z.; Sun, X. Cu3P nanoparticle-reduced graphene oxide hybrid: an efficient electrocatalyst to realize N2-to-NH3 conversion under ambient conditions. Chem. Commun. 2020, 56, 9328–9331.
- 31 Liu, Y.; Zhen, W.; Wang, Y.; Liu, J.; Jin, L.; Zhang, T.; Zhang, S.; Zhao, Y.; Song, S.; Li, C.; Zhu, J.; Yang, Y.; Zhang, H. One-Dimensional Fe2P Acts as a Fenton Agent in Response to NIR II Light and Ultrasound for Deep Tumor Synergetic Theranostics. Angew. Chem. Int. Ed. 2019, 58, 2407–2412.
- 32 Zheng, Z.; Wu, H.-H.; Liu, H.; Zhang, Q.; He, X.; Yu, S.; Petrova, V.; Feng, J.; Kostecki, R.; Liu, P.; Peng, D.-L.; Liu, M.; Wang, M.-S. Achieving Fast and Durable Lithium Storage through Amorphous FeP Nanoparticles Encapsulated in Ultrathin 3D P-Doped Porous Carbon Nanosheets. ACS Nano 2020, 14, 9545–9561.
- 33 Liu, Y.; Cao, X.; Kong, R.; Du, G.; Asiri, A. M.; Lu, Q.; Sun, X. Cobalt phosphide nanowire array as an effective electrocatalyst for non-enzymatic glucose sensing. J. Mater. Chem. B 2016, 5, 1901–1904.
- 34 Chen, T.; Liu, D.; Lu, W.; Wang, K.; Du, G.; Asiri, A. M.; Sun, X. Three-Dimensional Ni2P Nanoarray: An Efficient Catalyst Electrode for Sensitive and Selective Nonenzymatic Glucose Sensing with High Specificity. Anal. Chem. 2016, 88, 7885–7889.
- 35 Xiong, X.; You, C.; Cao, X.; Pang, L.; Kong, R.; Sun, X. Ni2P nanosheets array as a novel electrochemical catalyst electrode for non-enzymatic H2O2 sensing. Electrochim. Acta 2017, 253, 517–521.
- 36 Tong, S.; Li, Z.; Qiu, B.; Zhao, Y.; Zhang, Z. Biphasic nickel phosphide nanosheets: Self-supported electrocatalyst for sensitive and selective electrochemical H2O2 detection and its practical applications in blood and living cells. Sens. Actuator B-Chem. 2018, 258, 789–795.
- 37 Wang, M.; Ma, Z.; Li, J.; Zhang, Z.; Tang, B.; Wang, X. Well-dispersed palladium nanoparticles on nickel-phosphorus nanosheets as efficient three-dimensional platform for superior catalytic glucose electro-oxidation and non-enzymatic sensing. J. Colloid Interface Sci. 2018, 511, 355–364.
- 38 Wu, P.; Shao, Q.; Hu, Y.; Jin, J.; Yin, Y.; Zhang, H.; Cai, C. Direct electrochemistry of glucose oxidase assembled on graphene and application to glucose detection. Electrochim. Acta 2010, 55, 8606-8614.
- 39 Lu, T.; Chen, F. Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm. J. Mol. Graphics Modell. 2012, 38, 314–323.
- 40 Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.
- 41Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralt, Jr., J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, V.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01, Gaussian Inc., Wallingford CT, 2010.
- 42 Laviron, E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. Interfacial Electrochem. 1979, 101, 19–28.
- 43 Karikalan, N.; Karthik, R.; Chen, S.-M.; Velmurugan, M.; Karuppiah, C. Electrochemical properties of the acetaminophen on the screen printed carbon electrode towards the high performance practical sensor applications. J. Colloid Interface Sci. 2016, 483, 109–117.
- 44 Tang, C.; Zhang, R.; Lu, W.; Wang, Z.; Liu, D.; Hao, S.; Du, G.; Asiri, A. M.; Sun, X. Energy-Saving Electrolytic Hydrogen Generation: Ni2P Nanoarray as a High-Performance Non-Noble-Metal Electrocatalyst. Angew. Chem. Int. Ed. 2017, 56, 842–846.