A Mitochondria-Specific Orange/Near-Infrared-Emissive Fluorescent Probe for Dual-Imaging of Viscosity and H2O2 in Inflammation and Tumor Models
Corresponding Author
Li Fan
Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi, 030006 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorQi Zan
Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi, 030006 China
Search for more papers by this authorXiaodong Wang
Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi, 030006 China
Search for more papers by this authorShuohang Wang
School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, Jilin, 132022 China
Search for more papers by this authorCorresponding Author
Yuewei Zhang
School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, Jilin, 132022 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorWenjuan Dong
Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi, 030006 China
Search for more papers by this authorShaomin Shuang
Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi, 030006 China
Search for more papers by this authorCorresponding Author
Chuan Dong
Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi, 030006 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Li Fan
Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi, 030006 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorQi Zan
Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi, 030006 China
Search for more papers by this authorXiaodong Wang
Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi, 030006 China
Search for more papers by this authorShuohang Wang
School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, Jilin, 132022 China
Search for more papers by this authorCorresponding Author
Yuewei Zhang
School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, Jilin, 132022 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorWenjuan Dong
Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi, 030006 China
Search for more papers by this authorShaomin Shuang
Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi, 030006 China
Search for more papers by this authorCorresponding Author
Chuan Dong
Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi, 030006 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorMain observation and conclusion
Elucidating the intrinsic relationship between viscosity/H2O2 and mitochondria-associated diseases remains a great challenge owing to the lack of research on multiple diseases models, such as inflammation and malignant tumor models. In this work, we have developed a mitochondria-specific orange/near-infrared-emissive fluorescent probe TTPB, for dual-imaging of viscosity and H2O2 levels in two different channels. The probe exhibited a remarkable response to viscosity with NIR emission round 666 nm, and was highly sensitive to H2O2 in orange channel with emission peak at 586 nm. Moreover, TTPB has good mitochondria-specific ability and permits individual detecting of viscosity in NIR channels and H2O2 levels in orange channel in living cells. More notably, TTPB was successfully applied to simultaneously image the viscosity and H2O2 levels in inflammation and cancer models.
Supporting Information
Filename | Description |
---|---|
cjoc202000725-sup-0001-Supinfo.pdfPDF document, 1.9 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Singer, S. J.; Nicolson, G. L. The fluid mosaic model of the structure of cell membranes. Science 1972, 175, 720–731.
- 2 Ow, Y. L. P.; Green, D. R.; Hao, Z. Y.; Mak, T. W. Cytochrome c: functions beyond respiration. Nat. Rev. Mol. Cell. Bio. 2008, 9, 532–542.
- 3 Stutts, M. J.; Canessa, C. M.; Olsen, J. C. CFTR as a cAMP-dependent regulator of sodium channels. Science 1995, 269, 847–850.
- 4 Kamata, H.; Honda, S.; Maeda, S.; Chang, L.; Hirata, H.; Michael, K. Reactive oxygen species promote TNFα-induced death and sustained JNK activation by Inhibiting MAP kinase phosphatases. Cell 2005, 120, 649–661.
- 5 Jendrach, M.; Mai, S.; Pohl, S. Short- and long-term alterations of mitochondrial morphology, dynamics and mtDNA after transient oxidative stress. Mitochondrion 2008, 8, 293–304.
- 6 Finkel, T.; Serrano, M.; Blasco, M. A. The common biology of cancer and ageing. Nature 2007, 448, 767–774.
- 7 Silzer, T. K.; Phillips, N. R. Etiology of type 2 diabetes and Alzheimer's disease: Exploring the mitochondria. Mitochondrion 2018, 43, 16–24.
- 8 Barnham, K. J.; Masters, C. L.; Bush, A. I. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug. Discov. 2004, 3, 205–214.
- 9 Yang, Z.; He, Y.; Lee, J. H.; Park, N.; Suh, M.; Chae, W. S.; Kim, J. S. A self-calibrating bipartite viscosity sensor for mitochondria. J. Am. Chem. Soc. 2013, 135, 9181–9185.
- 10 Yang, Z. G.; Cao, G. F.; He, Y. X.; Yang, J. H.; Kim, T.; Peng, X. J.; Kim, J. S. Macro-/micro-environment-sensitive chemosensing and biological imaging. Chem. Soc. Rev. 2014, 43, 4563–4601.
- 11 Wen, Y.; Liu, K.; Yang, H.; Liu, Y.; Chen, L.; Liu, Z.; Yi, T. Mitochondria-directed fluorescent probe for the detection of hydrogen peroxide near mitochondrial DNA. Anal. Chem. 2015, 87, 10579–10584.
- 12 Roopa, N.; Kumar, V.; Bhalla, M.; Kumar. Development and sensing applications of fluorescent motifs within the mitochondrial environment. Chem. Commun. 2015, 51, 15614–15628.
- 13 Zhu, H.; Fan, J.; Du, J.; Peng, X. Fluorescent probes for sensing and imaging within specific cellular organelles. Acc. Chem. Res. 2016, 49, 2115–2126.
- 14 Lee, S. C.; Heo, J.; Ryu, J. W.; Lee, C. L.; Kim, S.; Tae, J. S.; Rhee, B. O.; Kim, S. W.; Kwon, O. P. Pyrrolic molecular rotors acting as viscosity sensors with high fluorescence contrast. Chem. Commun. 2016, 52, 13695–13698.
- 15 Baek, Y.; Park, S. J.; Zhou, X.; Kim, G.; Kim, H. M.; Yoon, J. A viscosity sensitive fluorescent dye for real-time monitoring of mitochondria transport in neurons. Biosens. Bioelectron. 2016, 86, 885–891.
- 16 Li, H.; Yao, Q.; Fan, J.; Du, J.; Wang, J.; Peng, X. A two-photon NIR-to-NIR fluorescent probe for imaging hydrogen peroxide in living cells. Biosens. Bioelectron. 2017, 94, 536–543.
- 17 Wen, Y.; Huo, F. J.; Yin, C. X. Organelle targetable fluorescent probes for hydrogen peroxide. Chin. Chem. Lett. 2019, 30, 1834–1842.
- 18 Xu, L. F.; Sun, L. H.; Zeng, F.; Wu, S. Z. Near-infrared fluorescent nanoprobe for detecting hydrogen peroxide in inflammation and ischemic kidney injury. Chin. J. Chem. 2020, 38, 1304–1310.
- 19 Jiang, N.; Fan, J. L.; Zhang, S.; Wu, T.; Wang, J. Y.; Gao, P.; Qu, J.; Zhou, F.; Peng, X. J. Dual mode monitoring probe for mitochondrial viscosity in single cell. Sens. Actuat. B-Chem. 2014, 190, 685–693.
- 20 Ren, M. G.; Deng, B. B.; Zhou, K.; Kong, X. Q.; Wang, J. Y.; Lin, W. Y. Single Fluorescent Probe for Dual-imaging viscosity and H2O2 in mitochondria with different fluorescence signals in living cells. Anal. Chem. 2017, 89, 552–555.
- 21 Lee, S. C.; Heo, J.; Woo, H. C.; Lee, J. A.; Seo, Y. H.; Lee, C. L.; Kim, S.; Kwon, O. P. Fluorescent molecular rotors for viscosity sensors. Chem. Eur. J. 2018, 24, 13706–13718.
- 22 Sánchez, A. J.; Lei, E. K.; Kelley, S. O. A multifunctional chemical probe for the measurement of local micropolarity and microviscosity in mitochondria. Angew. Chem. Int. Ed. 2018, 57, 8891–8895.
- 23 Li, S. J.; Li, Y. F.; Liu, H. W.; Zhou, D. Y.; Jiang, W. L.; Yang, J. O.; Li, C. Y. A Dual-response fluorescent probe for the detection of viscosity and H2S and Its application in studying their cross-talk influence in mitochondria. Anal. Chem. 2018, 90, 9418–9425.
- 24 Zhang, Y. Y.; Li, Z.; Hu, W.; Liu, Z. H. A mitochondrial-targeting near-infrared fluorescent probe for visualizing and monitoring viscosity in live cells and tissues. Anal. Chem. 2019, 91, 10302–10309.
- 25 Sun, C.; Cao, W. F.; Zhang, W.; Zhang, L. L.; Feng, Y.; Fang, M.; Xu, G. Y.; Shao, Z. L.; Yang, X. L.; Meng, X. M. Design of a ratiometric two-photon fluorescent probe for dual-response of mitochondrial SO2 derivatives and viscosity in cells and in vivo. Dyes. Pigm. 2019, 171, 107709.
- 26 Zou, Z.; Yan, Q.; Ai, S. X.; Qi, P.; Yang, H.; Zhang, Y. F.; Qing, Z. F.; Zhang, L. H.; Feng, F.; Yang, R. H. Real-time visualizing mitophagy- specific viscosity dynamic by mitochondria-anchored molecular rotor. Anal. Chem. 2019, 91, 8574–8581.
- 27 Yang, X. Z.; Xu, B.; Shen, L.; Sun, R.; Xu, Y. J.; Song, Y. L.; Ge, J. F. Series of mitochondria/lysosomes self-targetable near-infrared Hemicyanine Dyes for viscosity detection. Anal. Chem. 2020, 92, 3517–3521.
- 28 Li, S. J.; Wang, P. P.; Feng, W. Q.; Xiang, Y. H.; Dou, K.; Liu, Z. H. Simultaneous imaging of mitochondrial viscosity and hydrogen peroxide in Alzheimer's disease by a single near-infrared fluorescent probe with a large Stokes shift. Chem. Commun. 2020, 56, 1050–1053.
- 29 Ma, C. G.; Sun, W.; Xu, L. M.; Qian, Y.; Dai, J. N.; Zhong, G. Y.; Hou, Y. D.; Liu, J. L.; Shen, B. X. A minireview of viscosity-sensitive fluorescent probes: design and biological applications. J. Mater. Chem. B 2020, 8, 9642–9651.
- 30 Kolanowski, J. L.; Liu, F.; New, E. J. Fluorescent probes for the simultaneous detection of multiple analytes in biology. Chem. Soc. Rev. 2018, 47, 195–208.
- 31 Li, H.; Xin, C. Q.; Zhang, G. B.; Han, X. S.; Qin, W. J.; Zhang, C. W.; Yu, C. M.; Jing, S.; Li, L.; Huang, W. A mitochondria-targeted two-photon fluorogenic probe for the dual-imaging of viscosity and H2O2 levels in Parkinson's disease models. J. Mater. Chem. B 2019, 7, 4243–4251.
- 32 Dröge, W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002, 82, 47–95.
- 33 Fan, L.; Wang, X. D.; Ge, J. Y.; Li, F.; Zhang, C. H.; Lin, B.; Shuang, S. M.; Dong, C. A Golgi-targeted off–on fluorescent probe for real-time monitoring of pH changes in vivo. Chem. Commun. 2019, 55, 6685–6688.
- 34 Yin, J. L.; Peng, M.; Lin, W. Y. Visualization of mitochondrial viscosity in inflammation, fatty liver, and cancer living mice by a robust fluorescent probe. Anal. Chem. 2019, 91, 8415–8421.