Boosting the Capacitive Performance of Cobalt(II) Phthalocyanine by Non-peripheral Octamethyl Substitution for Supercapacitors†
Minzhang Li
School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 China
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorRajendran Ramachandran
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorYu Wang
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorQian Chen
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorCorresponding Author
Zong-Xiang Xu
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
E-mail: [email protected]Search for more papers by this authorMinzhang Li
School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 China
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorRajendran Ramachandran
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorYu Wang
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorQian Chen
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorCorresponding Author
Zong-Xiang Xu
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
E-mail: [email protected]Search for more papers by this author† Dedicated to Department of Chemistry, SUSTech, on the Occasion of her 10th Anniversary.
Main observation and conclusion
In this paper, pristine cobalt(II) phthalocyanine (CoPc) and non-peripheral octamethyl substituted CoPc (N-CoMe2Pc) are the focus of electrochemical investigation. CoPc and N-CoMe2Pc nanorods (NR) were synthesized by a facile precipitation process from sublimated bulk phthalocyanine powders and their electrochemical properties were explored. Due to the large specific surface area, the capacitance performance of the nanorods was significantly higher than that of the sublimated powder sample. N-CoMe2Pc powder exhibited better pseudocapacity compared with CoPc powder and CoPc NR, which is attributed to enhanced charge transfer rate and improved redox activity after the introduction of octamethyl substituents on phthalocyanine ring. The maximum specific capacitance value was achieved by N-CoMe2Pc NR based electrode, exhibiting 210.2 F g–1 capacitance at 5 mV s–1 scan rate and 156.1 F g–1 at 0.25 A g-1 current density, and also showing high efficiency and satisfactory retention. These results indicate that according to proper molecular design, N-CoMe2Pc NR could be applied as the potential candidate for electrode material in supercapacitors.
Supporting Information
Filename | Description |
---|---|
cjoc202000676-sup-0001-Supinfo.pdfPDF document, 458.7 KB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 El-Kady, M. F.; Shao, Y.; Kaner, R. B. Graphene for Batteries, Supercapacitors and Beyond. Nat. Rev. Mater. 2016, 1, 1–14.
- 2 Yang, Z.; Zhang, J.; Kintner-Meyer, M. C. W.; Lu X.; Choi, D.; Lemmon, J. P.; Liu, J. Electrochemical Energy Storage for Green Grid. Chem. Rev. 2011, 111, 3577–3613.
- 3 Chu, S.; Majumdar, A. Opportunities and Challenges for a Sustainable Energy Future. Nature 2012, 488, 294–303.
- 4 Lin, Z.; Goikolea, E.; Balducci, A.; Naoi, K.; Taberna, P. L.; Salanne, M.; Yushin, G.; Simon P. Materials for Supercapacitors: When Li-ion Battery Power is Not Enough. Mater. Today 2018, 21, 419–436.
- 5 Wu, Z.; Winter, A.; Chen, L.; Sun, Y.; Turchanin, A.; Feng, X.; Müllen, K. Three-Dimensional Nitrogen and Boron Co-Doped Graphene for High-Performance All-Solid-State Supercapacitors. Adv. Mater. 2012, 24, 5130–5135.
- 6 Zhang, L.; Zhao, X. Carbon-Based Materials as Supercapacitor Electrodes. Chem. Soc. Rev. 2009, 38, 2520–2531.
- 7 Arunachalam, R.; Prataap, R. K. V.; Raj, R. P.; Mohan, S.; Vijayakumar, J.; Péter, L.; Ahmad, M. A. Pulse Electrodeposited RuO2 Electrodes for High-Performance Supercapacitor Applications. Surf. Eng. 2019, 35, 102–108.
- 8 Ke, X.; Zhang, Z.; Cheng, Y.; Liang, Y.; Tan, Z.; Liu, J.; Liu, L.; Shi, Z.; Guo, Z. Ni(OH)2 Nanoflakes Supported on 3D Hierarchically Nanoporous Gold/Ni Foam as Superior Electrodes for Supercapacitors. Sci. China Mater. 2018, 61, 353–362.
- 9 Sakamoto, K.; Ohno-Okumura, E. Syntheses and Functional Properties of Phthalocyanines. Materials 2009, 2, 1127–1179.
- 10 Lokesh, K. S.; Uma, N.; Achar, B. N. Synthesis and Physico-Chemical Characterization of Metal Free, Sodium and Potassium Phthalocyanine Complexes. J. Non-Cryst. Solids 2007, 353, 384–389.
- 11
Lekitima, J. K.; Ozoemena, I.; Kobayashi, N. Electrochemical Capacitors Based on Nitrogen-Enriched Cobalt(II) Phthalocyanine/Multi- Walled Carbon Nanotube Nanocomposites. ECS Trans. 2013, 50, 125–132.
10.1149/05043.0125ecst Google Scholar
- 12 Chidembo, A. T.; Ozoemena, K. I. Electrochemical Capacitive Behaviour of Multiwalled Carbon Nanotubes Modified with Electropolymeric Films of Nickel Tetraaminophthalocyanine. Electroanalysis 2010, 22, 2529–2535.
- 13 Ramachandran, R.; Hu, Q.; Rajavel, K.; Zhu, P.; Zhao, C.; Wang, F.; Xu, Z. Non-peripheral Octamethyl-Substituted Copper (II) Phthalocyanine Nanorods with MXene Sheets: An Excellent Electrode Material for Symmetric Supercapacitor with Enhanced Electrochemical Performance. J. Power Sources 2020, 471, 228472.
- 14 Liu, Y.; McCrory, C. C. L. Modulating the Mechanism of Electrocatalytic CO2 Reduction by Cobalt Phthalocyanine through Polymer Coordination and Encapsulation. Nat. Commun. 2019, 10, 1683.
- 15 Sanna Jilani, B.; Mruthyunjayachari, C. D.; Malathesh, P.; Mounesh; Sharankumar, T. M.; Reddy, K. R. V. Electrochemical Sensing Based MWCNT-Cobalt Tetra Substituted Sorbaamide Phthalocyanine onto the Glassy Carbon Electrode Towards the Determination of 2-Amino Phenol: A Voltammetric Study. Sens. Actuators B-Chem. 2019, 301, 127078.
- 16 Deyab, M. A.; Mele, G. Polyaniline/Zn-Phthalocyanines Nanocomposite for Protecting Zinc Electrode in Zn-Air Battery. J. Power Sources 2019, 443, 227264.
- 17 Agboola, B. O.; Ozoemena, K. I. Synergistic Enhancement of Supercapacitance upon Integration of Nickel (II) Octa [(3, 5-biscarboxylate)-phenoxy] Phthalocyanine with SWCNT-Phenylamine. J. Power Sources 2010, 195, 3841–3848.
- 18 Mu, J.; Shao, C.; Guo, Z.; Zhang, M.; Zhang, Z.; Zhang, P.; Chen, B.; Liu, Y. Solvothermal Synthesis and Electrochemical Properties of 3D Flower-Like Iron Phthalocyanine Hierarchical Nanostructure. Nanoscale 2011, 3, 5126.
- 19 Lokesh, K. S.; Adriaens, A. Electropolymerization of Palladium Tetraaminephthalocyanine: Characterization and Supercapacitance Behavior. Dyes Pigment. 2015, 112, 192–200.
- 20 Madhuri, K. P.; John, N. S. Supercapacitor Application of Nickel Phthalocyanine Nanofibres and Its Composite with Reduced Graphene Oxide. Appl. Surf. Sci. 2018, 449, 528–536.
- 21 Wang, Y.; Shan, H.; Sun, X.; Dong, L.; Feng, Y.; Hu, Q.; Ye, W.; Roy, V. A. L.; Xu, J.; Xu, Z. Fabrication of Octamethyl Substituted Zinc (II) Phthalocyanine Nanostructure via Exfoliation and Use for Solution- Processed Field-Effect Transistor. Org. Electron. 2018, 55, 15–20.
- 22 Zheng, X.; Wang, Y.; Hu, J.; Yang, G.; Guo, Z.; Xia, J.; Xu, Z.; Fang, G. Octamethyl-Substituted Pd(II) Phthalocyanine with Long Carrier Lifetime as a Dopant-Free Hole Selective Material for Performance Enhancement of Perovskite Solar Cells. J. Mater. Chem. A 2017, 5, 24416–24424.
- 23 Lv, Z.; Hu, Q.; Xu, Z.; Wang, J.; Chen, Z.; Wang, Y.; Chen, M.; Zhou, K.; Zhou, Y.; Han, S. Organic Memristor Utilizing Copper Phthalocyanine Nanowires with Infrared Response and Cation Regulating Properties. Adv. Electron. Mater. 2019, 5, 1800793.
- 24 Han, N.; Wang, Y.; Ma, L.; Wen, J.; Li, J.; Zheng, H.; Nie, K.; Wang, X.; Zhao, F.; Li, Y.; Fan, J.; Zhong, J.; Wu, T.; Miller, D. J.; Lu, J.; Lee, S.; Li, Y. Supported Cobalt Polyphthalocyanine for High-Performance Electrocatalytic CO2 Reduction. Chem 2017, 3, 652–664.
- 25 Ji, X.; Zou, T.; Gong, H.; Wu, Q.; Qiao, Z.; Wu, W.; Wang, H. Cobalt Phthalocyanine Nanowires: Growth, Crystal Structure, and Optical Properties. Cryst. Res. Technol. 2016, 51, 154–159.
- 26 Karan, S. Mallik, B. Effects of Annealing on the Morphology and Optical Property of Copper (II) Phthalocyanine Nanostructured Thin Films. Solid State Commun. 2007, 143, 289–294.
- 27 Prajapati, P. K.; Kumar, A.; Jain, S. L. First Photocatalytic Synthesis of Cyclic Carbonates from CO2 and Epoxides Using CoPc/TiO2 Hybrid under Mild Conditions. ACS Sustain. Chem. Eng. 2018, 6, 7799–7809.
- 28 Zhang, H.; Wei, J.; Yan, Y.; Guo, Q.; Xie, L.; Yang, Z.; He, J.; Qi, W.; Cao, Z.; Zhao, X.; Pan, P.; Li, H.; Zhang, K.; Zhao, J.; Li, X.; Zhang, P.; Shah, K. W. Facile and Scalable Fabrication of MnO2 Nanocrystallines and Enhanced Electrochemical Performance of MnO2/MoS2 Inner Heterojunction Structure for Supercapacitor Application. J. Power Sources 2020, 450, 227616.
- 29 Fu, J.; Li, L.; Yun, J.; Lee, D.; Ryu, B. K.; Kim, K. H. Two-Dimensional Titanium Carbide (MXene)-Wrapped Sisal-Like NiCo2S4 as Positive Electrode for High-Performance Hybrid Pouch-Type Asymmetric Supercapacitor. Chem. Eng. J. 2019, 375, 121939.
- 30 An, C.; Wang, Y.; Huang, Y.; Xu, Y.; Jiao, L.; Yuan, H. Porous NiCo2O4 Nanostructures for High Performance Supercapacitors via a Microemulsion Technique. Nano Energy 2014, 10, 125–134.
- 31 Li, Y.; Wang, H.; Wang, L.; Mao, Z.; Wang, R.; He, B.; Gong, Y.; Hu, X. Mesopore-Induced Ultrafast Na+-Storage in T-Nb2O5/Carbon Nanofiber Films Toward Flexible High-Power Na-Ion Capacitors. Small 2019, 15, 1804539.
- 32 Lu, H.; Kobayashi, N. Optically Active Porphyrin and Phthalocyanine Systems. Chem. Rev. 2016, 116, 6184–6261.
- 33 Bian, J.; Feng, J.; Zhang, Z.; Li, Z.; Zhang, Y.; Liu, Y.; Ali, S.; Qu, Y.; Bai, L.; Xie, J.; Tang, D.; Li, X.; Bai, F.; Tang, J.; Jing, L. Dimension-Matched Zinc Phthalocyanine/BiVO4 Ultrathin Nanocomposites for CO2 Reduction as Efficient Wide-Visible-Light-Driven Photocatalysts via a Cascade Charge Transfer. Angew. Chem. Int. Ed. 2019, 58, 10873–10878.
- 34 Liang, Q.; Zhang, M.; Liu, C.; Xu, S.; Li, Z. Sulfur-Doped Graphitic Carbon Nitride Decorated with Zinc Phthalocyanines towards Highly Stable and Efficient Photocatalysis. Appl. Catal. Gen. 2016, 519, 107–115.
- 35 Prajapati, P. K.; Singh, H.; Yadav, R.; Sinha, A. K.; Szunerits, S.; Boukherroub, R.; Jain, S. L. Core-Shell Ni/NiO Grafted Cobalt (II) Complex: An Efficient Inorganic Nanocomposite for Photocatalytic Reduction of CO2 Under Visible Light Irradiation. Appl. Surf. Sci. 2019, 467, 370–381.
- 36 Yan, P.; Zhang, R.; Jia, J.; Wu, C.; Zhou, A.; Xu, J.; Zhang, X. Enhanced Supercapacitive Performance of Delaminated Two-Dimensional Titanium Carbide/Carbon Nanotube Composites in Alkaline Electrolyte. J. Power Sources 2015, 284, 38–43.
- 37 Lekitima, J. N.; Ozoemena, K. I.; Jafta, C. J.; Kobayashi, N.; Song, Y.; Tong, D.; Chen, S.; Oyama, M. High-Performance Aqueous Asymmetric Electrochemical Capacitors Based on Graphene Oxide/Cobalt(II)- Tetrapyrazinoporphyrazine Hybrids. J. Mater. Chem. A 2013, 1, 2821.
- 38 Taşaltın, N.; Zirek, Y.; Şan, M.; Taşaltın, C.; Karakuş, S.; Kilislioğlu, A. Flexible GO-CoPc and GO-NiPc Nanocomposite Electrodes for Hybrid Supercapacitors. Phys. E Low-Dimens. Syst. Nanostructures 2020, 116, 113766.
- 39 Lu, Y.; Zheng, Q.; Wu, J.; Yu, Y. Enhanced Electrochemical Charge Storage Performance by Doping of Copper Phthalocyanine-3,4′,4″, 4‴-Tetrasulfonic Acid Tetrasodium Salt into Polypyrrole/Multi- Walled Carbon Nanotubes 3D-Nanostructured Electrodes. Electrochim. Acta 2018, 265, 594–600.
- 40 Ramachandran, R.; Hu, Q.; Wang, F.; Xu, Z. Synthesis of N-CuMe2Pc Nanorods/Graphene Oxide Nanocomposite for Symmetric Supercapacitor Electrode with Excellent Cyclic Stability. Electrochim. Acta 2019, 298, 770–777.
- 41 Conway, B. E.; Birss, V.; Wojtowicz, J. The role and Utilization of Pseudocapacitance for Energy Storage by Supercapacitors. J. Power Sources 1997, 66, 1–14.
- 42 Wu, Z.; Pu, X.; Ji, X.; Zhu, Y.; Jing, M.; Chen, Q.; Jiao, F. High Energy Density Asymmetric Supercapacitors from Mesoporous NiCo2S4 Nanosheets. Electrochim. Acta 2015, 174, 238–245.
- 43 Ania, C. O.; Khomenko, V.; Raymundo-Piñero, E.; Parra, J. B.; Béguin, F. The Large Electrochemical Capacitance of Microporous Doped Carbon Obtained by Using a Zeolite Template. Adv. Funct. Mater. 2007, 17, 1828–1836.
- 44 Bakandritsos, A.; Chronopoulos, D. D.; Jakubec, P.; Pykal, M.; Čépe, K.; Steriotis, T.; Kalytchuk, S.; Petr, M.; Zbořil, R.; Otyepka, M. High- Performance Supercapacitors Based on a Zwitterionic Network of Covalently Functionalized Graphene with Iron Tetraaminophthalocyanine. Adv. Funct. Mater. 2018, 28, 1801111.
- 45 Yang, G.; Wang, Y.; Xu, J.; Lei, H.; Chen, C.; Shan, H.; Liu, X.; Xu, Z.; Fang, G. A Facile Molecularly Engineered Copper (II) Phthalocyanine as Hole Transport Material for Planar Perovskite Solar Cells with Enhanced Performance and Stability. Nano Energy 2017, 31, 322–330.
- 46 Wang, M.; Shi, H.; Zhang, P.; Liao, Z.; Wang, M.; Zhong, H.; Schwotzer, F.; Nia, A. S.; Zschech, E.; Zhou, S.; Kaskel, S.; Dong, R.; Feng, X. Phthalocyanine-Based 2D Conjugated Metal-Organic Framework Nanosheets for High-Performance Micro-Supercapacitors. Adv. Funct. Mater. 2020, 30, 2002664.
- 47 Qi, J.; Wang, X.; Lin, J.; Zhang, F.; Feng, J.; Fei, W. Vertically Oriented Few-Layer Graphene-Nanocup Hybrid Structured Electrodes for High- Performance Supercapacitors. J. Mater. Chem. A 2015, 3, 12396–12403.
- 48 Li, M.; Hu, Q.; Shan, H.; Chen, Q.; Wang, X.; Pan, J.; Xu, Z. In Situ Synthesis of N-CoMe2Pc/rGO Nanocomposite with Enhanced Photocatalytic Activity and Stability in Cr (VI) Reduction. J. Chem. Phys. 2020, 152, 154702.
- 49 Hussain, S.; Javed, M. S.; Asim, S.; Shaheen, A.; Khan, A. J.; Abbas, Y.; Ullah, N.; Iqbal, A.; Wang, M.; Qiao, G.; Yun, S. Novel Gravel-Like NiMoO4 Nanoparticles on Carbon Cloth for Outstanding Supercapacitor Applications. Ceram. Int. 2020, 46, 6406–6412.
- 50 Hekmat, F.; Hosseini, H.; Shahrokhian, S.; Unalan, H. E. Hybrid Energy Storage Device from Binder-Free Zinc-Cobalt Sulfide Decorated Biomass-Derived Carbon Microspheres and Pyrolyzed Polyaniline Nanotube-Iron Oxide. Energy Storage Mater. 2020, 25, 621–635.