Carbon Dots Promote the Performance of Anodized Nickel Passivation Film on Ethanol Oxidation by Enhancing Oxidation of the Intermediate†
Yandi Shi
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorCorresponding Author
Fan Liao
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123 China
E-mail: [email protected]; [email protected]Search for more papers by this authorWenxiang Zhu
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorHuixian Shi
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorKui Yin
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorCorresponding Author
Mingwang Shao
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123 China
E-mail: [email protected]; [email protected]Search for more papers by this authorYandi Shi
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorCorresponding Author
Fan Liao
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123 China
E-mail: [email protected]; [email protected]Search for more papers by this authorWenxiang Zhu
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorHuixian Shi
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorKui Yin
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorCorresponding Author
Mingwang Shao
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123 China
E-mail: [email protected]; [email protected]Search for more papers by this author†Dedicated to the Special Issue of Nanostructured Materials for Electrochemical Energy Conversion and Storage.
Main observation and conclusion
Ethanol is considered a better fuel than methanol in direct alcohol fuel cells because of the high energy density and low toxicity. Compared with noble metal catalysts, nickel-based catalysts are much cheaper in price. However, present nickel-based catalysts still surfer from some disadvantages such as low activity and high overpotential. In this paper, we show a new and high efficient nickel- based catalyst for ethanol oxidation. A layer of anodized nickel passivation film (Ni-APF) was formed on the surface of nickel sheet by anodic oxidation method with carbon dots (CDs) as co-catalyst. At the current density of 110 mA·cm−2, the potential for Ni-APF/CDs was only 0.541 V (vs. Ag/AgCl), which was 18.8% lower than that of Ni-APF. Low overpotential could reduce electrode thermal loss and increase output energy. Ni-APF/CDs showed 144.4 mA∙cm−2 peak current density at peak potential 0.662 V (vs. Ag/AgCl), which was 31% higher than that of Ni-APF (110.3 mA∙cm−2). In this system, CDs mainly function in the increase of charge-transfer capacity and the promotion oxidation of carbonaceous intermediates.
Supporting Information
Filename | Description |
---|---|
cjoc202000665-sup-0001-Supinfo.pdfPDF document, 1.9 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Wang, Y.; Shi, M. M.; Bao, D.; Meng, F. L.; Zhang, Q.; Zhou, Y. T.; Liu, K. H.; Zhang, Y.; Wang, J. Z.; Chen, Z. W.; Liu, D. P.; Jiang, Z.; Luo, M.; Gu, L.; Zhang, Q. H.; Cao, X. Z.; Yao, Y.; Shao, M. H.; Zhang, Y.; Zhang, X. B.; Chen, J. G.; Yan, J. M.; Jiang, Q. Generating Defect-Rich Bismuth for Enhancing the Rate of Nitrogen Electroreduction to Ammonia. Angew. Chem. Int. Ed. 2019, 58, 9464–9469.
- 2 Zhong, H. X.; Zhang, Q.; Wang, J.; Zhang, X. B.; Wei, X. L.; Wu, Z. J.; Li, K.; Meng, F. L.; Bao, D.; Yan, J. M. Engineering Ultrathin C3N4 Quantum Dots on Graphene as a Metal-Free Water Reduction Electrocatalyst. ACS Catal. 2018, 8, 3965−3970.
- 3 Meng, F. L.; Liu, K. H.; Zhang, Y.; Shi, M. M.; Zhang, X. B.; Yan, Y. M.; Jiang, Q. Recent Advances Toward the Rational Design of Efficient Bifunctional Air Electrodes for Rechargeable Zn–Air Batteries. Small 2018, 14, 1703843.
- 4 Zhong, H. X.; Zhang, Y.; Zhang, X. B. Superior Oxygen Reduction Electrocatalyst: Hollow Porous Spinel Microsphere. Chem 2018, 4, 191–198.
- 5 Zhang, Q.; Zhong, H. X.; Meng, F. L.; Bao, D.; Zhang, X. B.; Wei, X. L. Three-dimensional Interconnected Ni(Fe)OxHy Nanosheets on Stainless Steel Mesh as a Robust Integrated Oxygen Evolution Electrode. Nano Res. 2018, 11, 1294–1300.
- 6 Meng, F. L.; Zhong, H. X.; Bao, D.; Yan, J. M.; Zhang, X. B. In Situ Coupling of Strung Co4N and Intertwined N−C Fibers toward Free- Standing Bifunctional Cathode for Robust, Efficient, and Flexible Zn−Air Batteries. J. Am. Chem. Soc. 2016, 138, 10226−10231.
- 7 Munjewar, S. S.; Thombre, S. B. Effect of Current Collector Roughness on Performance of Passive Direct Methanol Fuel Cell. Renew. Energy 2019, 138, 272−283.
- 8 Fu, X. Y.; Zhao, Z. P.; Wan, C. Z.; Wang, Y. L.; Fan, Z.; Song, F.; Cao, B. C.; Li, M. F.; Xue, W.; Huang, Y.; Duan, X. F. Ultrathin Wavy Rh Nanowires as Highly Effective Electrocatalysts for Methanol Oxidation Reaction with Ultrahigh ECSA. Nano Res. 2019, 12, 211–215.
- 9 Rajesh, D.; Neel, P. I.; Pandurangan, A.; Mahendiran, C. Pd-NiO Decorated Multiwalled Carbon Nanotubes Supported on Reduced Graphene Oxide as an Efficient Electrocatalyst for Ethanol Oxidation in Alkaline Medium. Appl. Surf. Sci. 2018, 442, 787–796.
- 10 Pinheiro, V. S.; Souza, F. M.; Gentil, T. C.; Nascimento, A. N.; Bohnstedt, P.; Parreira, L. S.; Paz, E. C.; Hammer, P.; Sairre, M. I.; Batista, B. L.; Santos, M. C. Sn-Containing Electrocatalysts with a Reduced Amount of Palladium for Alkaline Direct Ethanol Fuel Cell Applications. Renew. Energy 2020, 158, 49−63.
- 11 Marinkovic, N. S.; Li, M.; Adzic, R. R. Pt-based Catalysts for Electrochemical Oxidation of Ethanol. Top. Curr. Chem. 2019, 377, 11.
- 12 Zuo, L. X.; Jiang, L. P.; Zhu, J. J. Sonochemical Synthesis of Two Dimensional C3N4 Nanosheets Supported Palladium Composites and Their Electrocatalytic Activity for Oxygen Reduction and Methanol Oxidation Reaction. Chin. J. Chem. 2017, 35, 969−976.
- 13 Rezaee, S.; Shahrokhian, S. Facile Synthesis of Petal-Like NiCo/ NiOCoO Nanoporous Carbon Composite Based on Mixed-Metallic MOFs and Their Application for Electrocatalytic Oxidation of Methanol. Appl. Catal. B Environ. 2019, 244, 802–813.
- 14 Wang, S.; He, P.; He, M. Q.; Dong, F. Q.; Liu, H. H.; Lei, H.; Zhang, X. J.; He, S. Y. Enhanced Electrocatalytic Activity of Dual Template Based Pt/Cu-zeolite A/graphene for Methanol Electrooxidation. Chin. J. Chem. 2018, 36, 37–41.
- 15 Hassanzadeh, V.; Sheikh-Mohseni, M. A.; Habibi, B. Catalytic Oxidation of Ethanol by a Nanostructured Ni-Co/RGO Composite: Electrochemical Construction and Investigation. J. Electroanal. Chem. 2019, 847, 113200.
- 16 Bott-Neto, J. L.; Martins, T. S.; Machado, S. A. S.; Ticianelli, E. A. Electrocatalytic Oxidation of Methanol, Ethanol, and Glycerol on Ni(OH)2 Nanoparticles Encapsulated with Poly[Ni(salen)] Film. ACS Appl. Mater. Interfaces 2019, 11, 30810–30818.
- 17 Oznuluer, T.; Demir, U.; Dogan, H. O. Fabrication of Underpotentially Deposited Cu Monolayer/Electrochemically Reduced Graphene Oxide Layered Nanocomposites for Enhanced Ethanol Electro-oxidation. Appl. Catal. B Environ. 2018, 235, 56–65.
- 18 Yang, W. L.; Yang, X. P.; Jia, J.; Hou, C. M.; Gao, H. T.; Mao, Y. N.; Wang, C.; Lin, J. H.; Luo, X. L. Oxygen Vacancies Confined in Ultrathin Nickel Oxide Nanosheets for Enhanced Electrocatalytic Methanol Oxidation. Appl. Catal. B Environ. 2019, 244, 1096–1102.
- 19 Soliman, A. B.; Abdel-Samad, H. S.; Abdel Rehim, S. S.; Ahmed, M. A.; Hassan, H. H. High Performance Nano-Ni/Graphite Electrode for Electro-Oxidation in Direct Alkaline Ethanol Fuel Cells. J. Power Sources 2016, 325, 653–663.
- 20 Zhu, M. M.; Zhou, Y. J.; Sun, Y.; Zhu, C.; Hu, L. L.; Gao, J.; Huang, H.; Liu, Y.; Kang, Z. H. Cobalt Phosphide/Carbon Dots Composite as an Efficient Electrocatalyst for Oxygen Evolution Reaction. Dalton Trans. 2018, 47, 5459–5464.
- 21 Liu, Y.; Li, X.; Zhang, Q. H.; Li, W. D.; Xie, Y.; Liu, H. Y.; Shang, L.; Liu, Z. Y.; Chen, Z. M.; Gu, L.; Tang, Z. Y.; Zhang, T. R.; Lu, S. Y. A General Route to Prepare Low-ruthenium-content Bimetallic Electrocatalysts for pH-universal Hydrogen Evolution Reaction by Using Carbon Quantum Dots. Angew. Chem. Int. Ed. 2020, 59, 1718−1726.
- 22 Song, H. Q.; Li, Y. H.; Shang, L.; Tang, Z. Y.; Zhang, T. R.; Lu S. Y. Designed Controllable Nitrogen-Doped Carbon-Dots-Loaded MoP Nanoparticles for Boosting Hydrogen Evolution Reaction in Alkaline Medium. Nano Energy 2020, 72, 104730.
- 23 Liu, Y.; Yang, Y. P.; Peng, Z. K.; Liu, Z. Y.; Chen, Z. M.; Shang, L.; Lu, S. Y.; Zhang, T. R. Self-Crosslinking Carbon Dots Loaded Ruthenium Dots as an Efficient and Super-Stable Hydrogen Production Electrocatalyst at all pH Values. Nano Energy 2019, 65, 104023.
- 24 Ullah, N.; Zhao, W. T.; Lu, X. Q.; Oluigbo, C. J.; Shah, S. A.; Zhang, M. M.; Xie, J. M.; Xu, Y. G. In Situ Growth of M-MO (M = Ni, Co) in 3D Graphene as a Competent Bifunctional Electrocatalyst for OER and HER. Electrochim. Acta 2019, 298, 163–171.
- 25 Chen, Z. M.; Gu, L.; Tang, Z. Y.; Zhang, T. R.; Lu, S. Y.; Dang, Q.; Liao, F.; Sun, Y. Y.; Zhang, S. S.; Huang, H.; Shen, W.; Kang, Z. H.; Shi, Y. D.; Shao, M. W. Rhodium/Silicon Quantum Dot/Carbon Quantum Dot Composites as Highly Efficient Electrocatalysts for Hydrogen Evolution Reaction with Pt-Like Performance. Electrochim. Acta 2019, 299, 828–834.
- 26 Cuna, A.; Plascencia, C. R.; da Silva, E. L.; Marcuzzo, J.; Khan, S.; Tancredi, N.; Baldan, M. R.; Malfatti, C. D. Electrochemical and Spectroelectrochemical Analyses of Hydrothermal Carbon Supported Nickel Electrocatalyst for Ethanol Electro-oxidation in Alkaline Medium. Appl. Catal. B Environ. 2017, 202, 95–103.
- 27 Yu, J.; Ni, Y. H.; Zhai, M. H. Simple Solution-Combustion Synthesis of Ni-NiO@C Nanocomposites with Highly Electrocatalytic Activity for Methanol Oxidation. J. Phys. Chem. Solids 2018, 112, 119–126.
- 28 Huang, Q.; Pollard, T. P.; Ren, X. L.; Kim, D.; Magasinski, A.; Borodin, O.; Yushin, G. Fading Mechanisms and Voltage Hysteresis in FeF2-NiF2 Solid Solution Cathodes for Lithium and Lithium-Ion Batteries. Small 2019, 15, 1804670.
- 29 Fu, Y. J.; Zhu, C.; Liu, C. G.; Zhang, M. L.; Wang, H. B.; Shi, W. L.; Huang, H.; Liu, Y.; Kang, Z. H. CoMn-S/CDs Nanocomposite for Effective Long WaveLength Visible-Light-Driven Photocatalytic Water Splitting. Appl. Catal. B Environ. 2018, 226, 295–302.
- 30 Guo, X. M.; Qian, C.; Wan, X. H.; Zhang, W.; Zhu, H. W.; Zhang, J. H.; Yang, H. X.; Lin, S. L.; Kong, Q. H.; Fan, T. X. Facile in Situ Fabrication of Biomorphic Co2P-Co3O4/rGO/C as an Efficient Electrocatalyst for the Oxygen Reduction Reaction. Nanoscale 2020, 12, 4374−4382.
- 31 Guo, X. M.; Zhang, W.; Zhang, D.; Qian, S. L.; Tong, X. Z.; Zhou, D. C.; Zhang, J. H.; Yuan, A. H. Submicron Co9S8/CoS/Carbon Spheres Derived from Bacteria for the Electrocatalytic Oxygen Reduction Reaction. ChemElectroChem 2019, 17, 4571−4575.
- 32 Wang, H.; Cao, Y. C.; Li, J.; Yu, J. G.; Gao, H. Y.; Zhao, Y. N.; Kwon, Y. U.; Li, G. D. Preparation of Ni/NiO-C Catalyst with NiO Crystal: Catalytic Performance and Mechanism for Ethanol Oxidation in Alkaline Solution. Ionics 2018, 24, 2745–2752.
- 33 Sun, Y.; Zhou, Y. J.; Zhu, C.; Tu, W. J.; Wang, H. B.; Huang, H.; Liu, Y.; Shao, M. W.; Zhong, J.; Lee, S. T.; Kang, Z. H. Synergistic Cu@CoOx Core-Cage Structure on Carbon Layers as Highly Active and Durable Electrocatalysts for Methanol Oxidation. Appl. Catal. B Environ. 2019, 244, 795–801.
- 34 Yuan, L. S.; Zheng, L. X.; Jia, M. L.; Zhang, S. J.; Wang, X. L.; Peng, C. Nanoporous Nickel-Copper-Phosphorus Amorphous Alloy Film for Methanol Electro-Oxidation in Alkaline Medium. Electrochim. Acta 2015, 154, 54–62.
- 35 Zhan, J. Cai, M.; Zhang, C. F.; Wang, C. Synthesis of Mesoporous NiCo2O4 Fibers and Their Electrocatalytic Activity on Direct Oxidation of Ethanol in Alkaline Media. Electrochim. Acta 2015, 154, 70–76.
- 36 He, Y. M.; He, Q. Y.; Wang, L. Q.; Zhu, C.; Golani, P.; Handoko, A. D.; Yu, X. C.; Gao, C.; Ding, M. N.; Wang, X. W.; Liu, F. C.; Zeng, Q. S.; Yu, P.; Guo, S. S.; Yakobson, B. I.; Wang, L.; Seh, Z. W.; Zhang, Z. H.; Wu, M. H.; Wang, Q. J.; Zhang, H.; Liu, Z. Self-Gating in Semiconductor Electrocatalysis. Nat. Mater. 2019, 18, 1098–1104.
- 37 Cruz-Ortiz, B. R.; Garcia-Lobato, M. A.; Larios-Durán, E. R.; Múzquiz-Ramos, E. M.; Ballesteros-Pacheco, J. C. Potentiostatic Electrodeposition of Nanostructured NiO Thin Films for Their Application as Electrocatalyst. J. Electroanal. Chem. 2016, 772, 38–45.
- 38 Han, Y. Z.; Huang, H.; Zhang, H. C.; Liu, Y.; Han, X.; Liu, R. H.; Li, H. T.; Kang, Z. H. Carbon Quantum Dots with Photoenhanced Hydrogen- bond Catalytic Activity in Aldol Condensations. ACS Catal. 2014, 4, 781–787.