CoSe2/MoS2 Heterostructures to Couple Polysulfide Adsorption and Catalysis in Lithium-Sulfur Batteries†
Zihan Shen
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Institute of Materials Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210046 China
Search for more papers by this authorQingwen Zhou
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Institute of Materials Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210046 China
Search for more papers by this authorHuiling Yu
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Institute of Materials Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210046 China
Search for more papers by this authorJiaming Tian
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Institute of Materials Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210046 China
Search for more papers by this authorMan Shi
State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Chaoquan Hu
State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
Nanjing IPE Institute of Green Manufacturing Industry, Nanjing, Jiangsu, 211100 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Huigang Zhang
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Institute of Materials Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210046 China
E-mail: [email protected]; [email protected]Search for more papers by this authorZihan Shen
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Institute of Materials Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210046 China
Search for more papers by this authorQingwen Zhou
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Institute of Materials Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210046 China
Search for more papers by this authorHuiling Yu
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Institute of Materials Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210046 China
Search for more papers by this authorJiaming Tian
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Institute of Materials Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210046 China
Search for more papers by this authorMan Shi
State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Chaoquan Hu
State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
Nanjing IPE Institute of Green Manufacturing Industry, Nanjing, Jiangsu, 211100 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Huigang Zhang
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Institute of Materials Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210046 China
E-mail: [email protected]; [email protected]Search for more papers by this author†Dedicated to the Special Issue of Nanostructured Materials for Electrochemical Energy Conversion and Storage.
Main observation and conclusion
Lithium-sulfur batteries have been regarded as one of most promising next-generation energy storage devices because of their high energy density and low cost. However, polysulfide shuttling and slow kinetics hinder the practical application. We fabricated hierarchically heterostructured CoSe2/MoS2 nanoarrays on carbon clothes as the sulfur cathode host. The resulting heterostructures facilitate electron conduction and improve electrolyte wetting. More importantly, the composite heterostructures couple the strong polysulfide adsorption of CoSe2 and high catalytic activity of MoS2 to synergistically accelerate polysulfide conversion, demonstrating higher catalytic activity than their individual components.
Supporting Information
Filename | Description |
---|---|
cjoc202000661-sup-0001-Supinfo.pdfPDF document, 1.2 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Ye, H.; Li M.; Liu, T.; Li, Y.; Lu, J. Activating Li2S as the Lithium-Containing Cathode in Lithium-Sulfur Batteries. ACS Energy Lett. 2020, 5, 2234–2245.
- 2 Hu, Y.; Chen, W.; Lei, T.; Jiao, Y.; Huang, J.; Hu, A.; Gong; C.; Yan, C.; Wang, X.; Xiong, J. Strategies toward High-Loading Lithium-Sulfur Battery. Adv. Energy Mater. 2020, 10, 2000082.
- 3 Pu, J.; Shen, Z.; Zhong, C.; Zhou, Q.; Liu, J.; Zhu, J.; Zhang, H. Electrodeposition Technologies for Li-Based Batteries: New Frontiers of Energy Storage. Adv. Mater. 2020, 32, 1903808.
- 4 Jana, M.; Xu, R.; Cheng, X.-B.; Yeon, J. S.; Park, J. M.; Huang, J.-Q.; Zhang, Q.; Park, H. S. Rational Design of Two-Dimensional Nanomaterials for Lithium-Sulfur Batteries. Energy Environ. Sci. 2020, 13, 1049–1075.
- 5 Jin, X.; Zhao, Y.; Shen, Z.; Pu, J.; Xu, X.; Zhong, C.; Zhang, S.; Li, J.; Zhang H. Interfacial Design Principle of Sodiophilicity-Regulated Interlayer Deposition in a Sandwiched Sodium Metal Anode. Energy Storage Mater. 2020, 31, 221–229.
- 6 Pu, J.; Li, J.; Shen, Z.; Zhong, C.; Liu, J.; Ma, H.; Zhu, J.; Zhang, H.; Braun, P. V. Interlayer Lithium Plating in Au Nanoparticles Pillared Reduced Graphene Oxide for Lithium Metal Anodes. Adv. Funct. Mater. 2018, 28, 1804133.
- 7 Zhao, Y.; Jin, X.; Lu, Y.; Pu, J.; Shen, Z.; Zhong, C.; Zhang, S.; Liu, J.; Zhang, H. Silicon Quantum Dots Induce Uniform Lithium Plating in a Sandwiched Metal Anode. ChemElectroChem 2020, 7, 2026–2032.
- 8 Manthiram, A.; Bhargav, A. Less Pore Equals More. Nat. Energy 2019, 4, 908–909.
- 9 Peng, L.; Wei, Z.; Wan, C.; Li, J.; Chen, Z.; Zhu, D.; Baumann, D.; Liu, H.; Allen, C. S.; Xu, X.; Kirkland, A. I.; Shakir, I.; Almutairi, Z.; Tolbert, S.; Dunn, B.; Huang, Y.; Sautet, P.; Duan, X. A Fundamental Look at Electrocatalytic Sulfur Reduction Reaction. Nat. Catal. 2020, 3, 762–770.
- 10 Su, Y. S.; Manthiram, A. Lithium-Sulphur Batteries with a Microporous Carbon Paper as a Bifunctional Interlayer. Nat. Commun. 2012, 3, 1166.
- 11 Ye, C.; Zhang, L.; Guo, C. X.; Li, D. D.; Vasileff, A.; Wang, H. H.; Qiao, S. Z. A 3D Hybrid of Chemically Coupled Nickel Sulfide and Hollow Carbon Spheres for High Performance Lithium-Sulfur Batteries. Adv. Funct. Mater. 2017, 27, 9.
- 12 Mao, Y. Y.; Li, G. R.; Guo, Y.; Li, Z. P.; Liang, C. D.; Peng, X. S.; Lin, Z. Foldable Interpenetrated Metal-Organic Frameworks/Carbon Nanotubes Thin Film for Lithium-Sulfur Batteries. Nat. Commun. 2017, 8, 14628.
- 13 Xu, H.; Jiang, Q.; Zhang, B.; Chen, C.; Lin, Z. Integrating Conductivity, Immobility, and Catalytic Ability into High-N Carbon/Graphene Sheets as an Effective Sulfur Host. Adv. Mater. 2020, 32, e1906357.
- 14 Cui, G.; Li, G.; Luo, D.; Zhang, Y.; Zhao, Y.; Wang, D.; Wang, J.; Zhang, Z.; Wang, X.; Chen, Z. Three-Dimensionally Ordered Macro-Microporous Metal Organic Frameworks with Strong Sulfur Immobilization and Catalyzation for High-Performance Lithium-Sulfur Batteries. Nano Energy 2020, 72, 104685.
- 15 Wang, R.; Yang, J.; Chen, X.; Zhao, Y.; Zhao, W.; Qian, G.; Li, S.; Xiao, Y.; Chen, H.; Ye, Y.; Zhou, G.; Pan, F. Highly Dispersed Cobalt Clusters in Nitrogen-Doped Porous Carbon Enable Multiple Effects for High-Performance Li-S Battery. Adv. Energy Mater. 2020, 10, 1903550.
- 16 Ruan, T.; Wang, B.; Yang, Y.; Zhang, X.; Song, R.; Ning, Y.; Wang, Z.; Yu, H.; Zhou, Y.; Wang, D.; Liu, H.; Dou, S. Interfacial and Electronic Modulation via Localized Sulfurization for Boosting Lithium Storage Kinetics. Adv. Mater. 2020, 32, e2000151.
- 17 Lv, K.; Wang, P.; Wang, C.; Shen, Z.; Lu, Z.; Zhang, H.; Zheng, M.; He, P.; Zhou, H. Oxygen-Deficient Ferric Oxide as an Electrochemical Cathode Catalyst for High-Energy Lithium-Sulfur Batteries. Small 2020, 16, 2000870.
- 18 Luo, L.; Li, J.; Yaghoobnejad, A. H.; Manthiram, A. In-Situ Assembled VS4 as a Polysulfide Mediator for High-Loading Lithium-Sulfur Batteries. ACS Energy Lett. 2020, 5, 1177–1185.
- 19 Pu, J.; Shen, Z.; Zheng, J.; Wu, W.; Zhu, C.; Zhou, Q.; Zhang, H.; Pan, F. Multifunctional Co3S4@ Sulfur Nanotubes for Enhanced Lithium- Sulfur Battery Performance. Nano Energy 2017, 37, 7–14.
- 20 Zhang, C.; Biendicho, J. J.; Zhang, T.; Du, R.; Li, J.; Yang, X.; Arbiol, J.; Zhou, Y.; Morante, J. R.; Cabot, A. Combined High Catalytic Activity and Efficient Polar Tubular Nanostructure in Urchin-Like Metallic NiCo2Se4 for High-Performance Lithium-Sulfur Batteries. Adv. Funct. Mater. 2019, 29, 1903842.
- 21 Shen, Z., Cao, M.; Zhang, Z.; Pu, J.; Zhong, C.; Li, J.; Ma, H.; Li, F.; Zhu, J.; Pan, F. Efficient Ni2Co4P3 Nanowires Catalysts Enhance Ultrahigh-Loading Lithium-Sulfur Conversion in a Microreactor-Like Battery. Adv. Energy Mater. 2020, 30, 1906661.
- 22 Shen, Z.; Zhang, Z.; Li, M.; Yuan, Y.; Zhao, Y.; Zhang, S.; Zhong, C.; Zhu, J.; Lu, J.; Zhang, H. Rational Design of a Ni3N0. 85 Electrocatalyst to Accelerate Polysulfide Conversion in Lithium-Sulfur Batteries. ACS Nano 2020, 14, 6673–6682.
- 23 Wang, P., Shen, Z.; Xia, C.; Lv, K.; Zhang, H.; He, P.; Zhou, H. Renewable Polysulfides Regulation by Versatile Film toward High-Loading Lithium-Sulfur Batteries. ACS Appl. Mater. Interfaces 2020, 12, 47590–47598.
- 24 He, J.; Bhargav, A.; Yaghoobnejad, A. H.; Chen, Y.; Manthiram, A. 1T′-ReS2 Nanosheets In Situ Grown on Carbon Nanotubes as a Highly Efficient Polysulfide Electrocatalyst for Stable Li-S Batteries. Adv. Energy Mater. 2020, 10, 2001017.
- 25 Zhang, L.; Liu, Y.; Zhao, Z.; Jiang, P.; Zhang, T.; Li, M.; Pan, S.; Tang, T.; Wu, T.; Liu, P.; Hou, Y.; Lu, H. Enhanced Polysulfide Regulation via Porous Catalytic V2O3/V8C7 Heterostructures Derived from Metal- Organic Frameworks toward High-Performance Li-S Batteries. ACS Nano 2020, 14, 8495–8507.
- 26 Zhou, T. H.; Lv, W.; Li, J.; Zhou, G. M.; Zhao, Y.; Fan, S. X.; Liu, B. L.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Twinborn TiO2-TiN Heterostructures Enabling Smooth Trapping-Diffusion-Conversion of Polysulfides Towards Ultralong Life Lithium-Sulfur Batteries. Energy Environ. Sci. 2017, 10, 1694–1703.
- 27 Zhang, Y.; Mu, Z.; Yang, C.; Xu, Z.; Zhang, S.; Zhang, X.; Li, Y.; Lai, J.; Sun, Z.; Yang, Y.; Chao, Y.; Li, C.; Ge, X.; Yang, W.; Guo, S. Rational Design of MXene/1T-2H MoS2-C Nanohybrids for High-Performance Lithium-Sulfur Batteries. Adv. Funct. Mater. 2018, 28, 1707578.
- 28 Wang, M.; Fan, L.; Tian, D.; Wu, X.; Qiu, Y.; Zhao, C.; Guan, B.; Wang, Y.; Zhang, N.; Sun, K. Rational Design of Hierarchical SnO2/1T-MoS2 Nanoarray Electrode for Ultralong-Life Li-S Batteries. ACS Energy Lett. 2018, 3, 1627–1633.
- 29 Gong, Q. F.; Cheng, L.; Liu, C. H.; Zhang, M.; Feng, Q. L.; Ye, H. L.; Zeng, M.; Xie, L. M.; Liu, Z.; Li, Y. G. Ultrathin MoS2(1-x)Se2x Alloy Nanoflakes for Electrocatalytic Hydrogen Evolution Reaction. ACS Catal. 2015, 5, 2213–2219.
- 30 Liu, K.-K.; Zhang, W.; Lee, Y.-H.; Lin, Y.-C.; Chang, M.-T.; Su, C.-Y.; Chang, C.-S.; Li, H.; Shi, Y.; Zhang, H.; Lai, C.-S.; Li, L.-J. Growth of Large-Area and Highly Crystalline MoS2 Thin Layers on Insulating Substrates. Nano Lett. 2012, 12, 1538–1544.
- 31 Wang, X.; Gong, Y.; Shi, G.; Chow, W. L.; Keyshar, K.; Ye, G.; Vajtai, R.; Lou, J.; Liu, Z.; Ringe, E.; Tay, B. K.; Ajayan, P. M. Chemical Vapor Deposition Growth of Crystalline Monolayer MoSe2. ACS Nano 2014, 8, 5125–5131.
- 32 Xia, B.; An, L.; Gao, D.; Shi, S.; Xi, P.; Xue, D. Hierarchical Ultrathin Mo(SxSe1-x)2 Nanosheets with Tunable Ferromagnetism and Efficient Hydrogen Evolution Reaction Activity: Towards Defect Site Effect. CrystEngComm 2015, 17, 6420–6425.
- 33 Zhang, S.; Chowdari, B. V.; Wen, Z.; Jin, J.; Yang, J. Constructing Highly Oriented Configuration by Few-Layer MoS2: Toward High-Performance Lithium-Ion Batteries and Hydrogen Evolution Reactions. ACS Nano 2015, 9, 12464–12472.
- 34 Kong, D.; Wang, H.; Lu, Z.; Cui, Y. CoSe2 Nanoparticles Grown on Carbon Fiber Paper: An Efficient and Stable Electrocatalyst for Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2014, 136, 4897–4900.
- 35 Liu, Y.; Cheng, H.; Lyu, M.; Fan, S.; Liu, Q.; Zhang, W.; Zhi, Y.; Wang, C.; Xiao, C.; Wei, S.; Ye, B.; Xie, Y. Low Overpotential in Vacancy-Rich Ultrathin CoSe2 Nanosheets for Water Oxidation. J. Am. Chem. Soc. 2014, 136, 15670–15675.
- 36 Li, H.; Duan, X.; Wu, X.; Zhuang, X.; Zhou, H.; Zhang, Q.; Zhu, X.; Hu, W.; Ren, P.; Guo, P.; Ma, L.; Fan, X.; Wang, X.; Xu, J.; Pan, A.; Duan, X. Growth of Alloy MoS2xSe2(1–x) Nanosheets with Fully Tunable Chemical Compositions and Optical Properties. J. Am. Chem. Soc. 2014, 136, 3756–3759.
- 37 Mann, J.; Ma, Q.; Odenthal, P. M.; Isarraraz, M.; Le, D.; Preciado, E.; Barroso, D.; Yamaguchi, K.; Palacio, G.-S.; Nguyen, A.; Tran, T.; Wurch, M.; Nguyen, A.; Klee, V.; Bobek, S.; Sun, D.; Heinz, T. F.; Rahman, T. S.; Kawakami, R.; Bartels, L. 2-Dimensional Transition Metal Dichalcogenides with Tunable Direct Band Gaps: MoS2(1–x)Se2x Monolayers. Adv. Mater. 2014, 26, 1399–1404.
- 38 Kong, D.; Wang, H.; Cha, J. J.; Pasta, M.; Koski, K. J.; Yao, J.; Cui, Y. Synthesis of MoS2 and MoSe2 Films with Vertically Aligned Layers. Nano Lett. 2013, 13, 1341–1347.
- 39 Qi, C.; Li, Z.; Sun, C.; Chen, C.; Jin, J.; Wen, Z. Cobalt Phosphide Nanoflake-Induced Flower-like Sulfur for High Redox Kinetics and Fast Ion Transfer in Lithium-Sulfur Batteries. ACS Appl. Mater. Interfaces 2020, 12, 49626–49635.
- 40 Drvarič Talian, S.; Kapun, G.; Moškon, J.; Vizintin, A.; Randon-Vitanova, A.; Dominko, R.; Gaberšček, M. Which Process Limits the Operation of a Li–S System? Chem. Mater. 2019, 31, 9012–9023.