Bridging from the Sequence to Architecture: Graft Copolymers Engineering via Successive Latent Monomer and Grafting-from Strategies†
Yajie Zhang
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorXiaohuan Cao
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorYang Gao
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorYujie Xie
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorCorresponding Author
Zhihao Huang
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Zhengbiao Zhang
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 China
State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123 China
E-mail: [email protected]; [email protected]Search for more papers by this authorXiulin Zhu
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 China
Global Institute of Software Technology, No. 5 Qingshan Road, Suzhou National Hi-Tech District, Suzhou, Jiangsu, 215163 China
Search for more papers by this authorYajie Zhang
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorXiaohuan Cao
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorYang Gao
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorYujie Xie
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorCorresponding Author
Zhihao Huang
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Zhengbiao Zhang
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 China
State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123 China
E-mail: [email protected]; [email protected]Search for more papers by this authorXiulin Zhu
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 China
Global Institute of Software Technology, No. 5 Qingshan Road, Suzhou National Hi-Tech District, Suzhou, Jiangsu, 215163 China
Search for more papers by this author† Dedicated to the special issue of Polymer Synthesis.
Main observation and conclusion
The on-demand building copolymer structures, from sequence to architecture, is crucial in understanding the relation between polymer structure and property, meanwhile motivating the innovation of polymer hierarchy. However, the challenge is conspicuous for complicated polymer structures from inherently intricate polymerization. In this work, copolymers with tailored grafting density and distributions were achieved using successive latent monomer and grafting-from strategies. The hydroxyl group functionalized furan/maleimide adduct (FMOH) was selected as the latent monomer for RAFT polymerization of an array of copolymers with tailored localization of hydroxyl group along the main chain. The hydroxyl group further initiated the ring opening polymerization (ROP) of L-lactide or ε-caprolactone, resulting in a library of multicomponent copolymers via grafting-from strategy. The initiating efficiency reached to ~100% with variable molecular weight (21300—58600 Da) and narrow distributions (ÐM < 1.25), indicating that such graft copolymers possessed controlled density and distribution of side chains as its linear template. The investigation on thermal properties of the well-defined graft copolymers implied that the precise tailoring over copolymer structures at the molecule level could lead to tunable chemical/physical properties. This work bridged polymer from sequence to architecture, unveiled a new method in creating graft copolymers with programmable structures and provided the insight into the structure/property relationship.
Supporting Information
Filename | Description |
---|---|
cjoc202000643-sup-0001-Supinfo.pdfPDF document, 2.9 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Lutz, J. F.; Ouchi, M.; Liu, D. R.; Sawamoto, M. Sequence-controlled polymers. Science 2013, 341, 1238149.
- 2 Lutz, J. F.; Lehn, J. M.; Meijer, E. W.; Matyjaszewski, K. From precision polymers to complex materials and systems. Nat. Rev. Mater. 2016, 1, 16024.
- 3 Feng, C.; Huang, X. Y. Polymer Brushes: Efficient Synthesis and Applications. Acc. Chem. Res. 2018, 51, 2314–2323.
- 4 Huang, Y. J.; Mai, Y. Y.; Yang, X. W.; Beser, U.; Liu, J. Z.; Zhang, F.; Yan, D. Y.; Mullen, K.; Feng, X. L. Temperature-Dependent Multidimensional Self-Assembly of Polyphenylene-Based "Rod-Coil" Graft Polymers. J. Am. Chem. Soc. 2015, 137, 11602–11605.
- 5 Daniel, W. F. M.; Burdynska, J.; Vatankhah-Varnoosfaderani, M.; Matyjaszewski, K.; Paturej, J.; Rubinstein, M.; Dobrynin, A. V.; Sheiko, S. S. Solvent-free, supersoft and superelastic bottlebrush melts and networks. Nat. Mater. 2016, 15, 183–189.
- 6 Pakula, T.; Zhang, Y.; Matyjaszewski, K.; Lee, H.; Boerner, H.; Qin, S.; Berry, G. C. Molecular brushes as super-soft elastomers. Polymer 2006, 47, 7198–7206.
- 7 Kobayashi, M.; Terayama, Y.; Hosaka, N.; Kaido, M.; Suzuki, A.; Yamada, N. L.; Torikai, N.; Ishihara, K.; Takahara, A. Friction behavior of high-density poly(2-methacryloyloxyethyl phosphorylcholine) brush in aqueous media. Soft Matter 2007, 3, 740–746.
- 8 Yuan, J.; Xu, Y.; Walther, A.; Bolisetty, S.; Schumacher, M.; Schmalz, H.; Ballauff, M.; Muller, A. H. E. Water-soluble organo-silica hybrid nanowires. Nat. Mater. 2008, 7, 718–722.
- 9 Huang, K.; Rzayev, J. Well-Defined Organic Nanotubes from Multicomponent Bottlebrush Copolymers. J. Am. Chem. Soc. 2009, 131, 6880–6885.
- 10 Liu, M.; Wen, Y. T.; Song, X.; Zhu, J. L.; Li, J. A smart thermoresponsive adsorption system for efficient copper ion removal based on alginate-g-poly(N-isopropylacrylamide) graft copolymer. Carbohydr. Polym. 2019, 219, 280–289.
- 11 Watson, S.; Nie, M. Y.; Wang, L.; Stokes, K. Challenges and developments of self-assembled monolayers and polymer brushes as a green lubrication solution for tribological applications. RSC Adv. 2015, 5, 89698–89730.
- 12 Johnson, J. A.; Lu, Y. Y.; Burts, A. O.; Xia, Y.; Durrell, A. C.; Tirrell, D. A.; Grubbs, R. H. Drug-Loaded, Bivalent-Bottle-Brush Polymers by Graft-through ROMP. Macromolecules 2010, 43, 10326–10335.
- 13 Heinrich, C. D.; Thelakkat, M. Poly-(3-hexylthiophene) bottlebrush copolymers with tailored side-chain lengths and high charge carrier mobilities. J. Mater. Chem. C 2016, 4, 5370–5378.
- 14 Que, Y. R.; Liu, Y. J.; Tan, W.; Feng, C.; Shi, P.; Li, Y. J.; Huang, X. Y. Enhancing Photodynamic Therapy Efficacy by Using Fluorinated Nanoplatform. ACS Macro Lett. 2016, 5, 168–173.
- 15 Noel, A.; Borguet, Y. P.; Wooley, K. L. Self-Reporting Degradable Fluorescent Grafted Copolymer Micelles Derived from Biorenewable Resources. ACS Macro Lett. 2015, 4, 645–650.
- 16 Zhang, Q.; Ran, Q. P.; Zhao, H. X.; Shu, X.; Yang, Y.; Zhou, H. X.; Liu, J. P. pH-induced conformational changes of comb-like polycarboxylate investigated by experiment and simulation. Colloid Polym. Sci. 2016, 294, 1705–1715.
- 17 Paturej, J.; Sheiko, S. S.; Panyukov, S.; Rubinstein, M. Molecular structure of bottlebrush polymers in melts. Sci. Adv. 2016, 2, e1601478.
- 18 Kikuchi, M.; Nakano, R.; Jinbo, Y.; Saito, Y.; Ohno, S.; Togashi, D.; Enomoto, K.; Narumi, A.; Haba, O.; Kawaguchi, S. Graft Density Dependence of Main Chain Stiffness in Molecular Rod Brushes. Macromolecules 2015, 48, 5878–5886.
- 19 Li, Y. J.; Jian, Z. K.; Lang, M. D.; Zhang, C. M.; Huang, X. Y. Covalently Functionalized Graphene by Radical Polymers for Graphene-Based High-Performance Cathode Materials. ACS Appl. Mater. Interfaces 2016, 8, 17352–17359.
- 20 Xu, B. B.; Liu, Y. J.; Sun, X. W.; Hu, J. H.; Shi, P.; Huang, X. Y. Semifluorinated Synergistic Nonfouling/Fouling-Release Surface. ACS Appl. Mater. Interfaces 2017, 9, 16517–16523.
- 21 Tao, D. L.; Feng, C.; Cui, Y. A.; Yang, X.; Manners, I.; Winnik, M. A.; Huang, X. Y. Monodisperse Fiber-like Micelles of Controlled Length and Composition with an Oligo(p-phenylenevinylene) Core via "Living" Crystallization-Driven Self-Assembly. J. Am. Chem. Soc. 2017, 139, 7136–7139.
- 22 Zhang, W.; Li, Y.; Liu, L.; Sun, Q.; Shuai, X.; Zhu, W.; Chen, Y. Amphiphilic Toothbrushlike Copolymers Based on Poly(ethylene glycol) and Poly(ε-caprolactone) as Drug Carriers with Enhanced Properties. Biomacromolecules 2010, 11, 1331–1338.
- 23 Ding, N.; Shentu, B.; Pan, P.; Shan, G.; Bao, Y.; Weng, Z. Synthesis and Crystallization of Poly(vinyl acetate)-g-Poly(L-lactide) Graft Copolymer with Controllable Graft Density. Ind. Eng. Chem. Res. 2013, 52, 12897−12905.
- 24 Liu, N.; Liu, B.; Yao, C.; Cui, D. Immortal Ring-Opening Polymerization of rac-Lactide Using Polymeric Alcohol as Initiator to Prepare Graft Copolymer. Polymers 2016, 8, 17.
- 25 Moriceau, G.; Gody, G.; Hartlieb, M.; Kim, H.; Mastrangelo, A.; Smithb, T.; Perrier, S. Functional multisite copolymer by one-pot sequential RAFT copolymerization of styrene and maleic anhydride. Polym. Chem. 2017, 8, 4152–4161.
- 26 Moriceau, G.; Tanaka, J.; Lester, D.; Pappas, G. S.; Cook, A. B.; O'Hora, P.; Winn, J.; Smith, T.; Perrier, S. Influence of Grafting Density and Distribution on Material Properties Using Well-Defined Alkyl Functional Poly(Styrene-co-Maleic Anhydride) Architectures Synthesized by RAFT. Macromolecules 2019, 52, 1469−1478.
- 27 Ogura, Y.; Terashima, T.; Sawamoto, M. Amphiphilic PEG-Functionalized Gradient Copolymers via Tandem Catalysis of Living Radical Polymerization and Transesterification. Macromolecules 2017, 50, 822–831.
- 28 Xu, B. B.; Feng, C.; Huang, X. Y. A versatile platform for precise synthesis of asymmetric molecular brush in one shot. Nat. Commun. 2017, 8, 333.
- 29 Chang, A. B.; Lin, T. P.; Thompson, N. B.; Luo, S. X.; Liberman-Martin, A. L.; Chen, H. Y.; Lee, B.; Grubbs, R. H. Design, Synthesis, and Self-Assembly of Polymers with Tailored Graft Distributions. J. Am. Chem. Soc. 2017, 139, 17683–17693.
- 30 Lin, T. P.; Chang, A. B.; Chen, H. Y.; Liberman-Martin, A. L.; Bates, C. M.; Voegtle, M. J.; Bauer, C. A.; Grubbs, R. H. Control of Grafting Density and Distribution in Graft Polymers by Living Ring-Opening Metathesis Copolymerization. J. Am. Chem. Soc. 2017, 139, 3896–3903.
- 31 Matsuda, M.; Satoh, K.; Kamigaito, M. Periodically Functionalized and Grafted Copolymers via 1:2-Sequence-Regulated Radical Copolymerization of Naturally Occurring Functional Limonene and Maleimide Derivatives. Macromolecules 2013, 46, 5473–5482.
- 32 Huang, W.; Ma, H. W.; Han, L.; Liu, P. B.; Yang, L. C.; Shen, H. Y.; Hao, X. Y.; Li, Y. Synchronous Regulation of Periodicity and Monomer Sequence during Living Anionic Copolymerization of Styrene and Dimethyl-[4-(1-phenylvinyl)phenyl]silane (DPE-SiH). Macromolecules 2018, 51, 3746–3757.
- 33 Pfeifer, S.; Lutz, J. F. A facile procedure for controlling monomer sequence distribution in radical chain polymerizations. J. Am. Chem. Soc. 2007, 129, 9542–9543.
- 34 Kleiner, R. E.; Brudno, Y.; Birnbaum, M. E.; Liu, D. R. DNA-templated polymerization of side-chain-functionalized peptide nucleic acid aldehydes. J. Am. Chem. Soc. 2008, 130, 4646–4659.
- 35 Ida, S.; Terashima, T.; Ouchi, M.; Sawamoto, M. Selective radical addition with a designed heterobifunctional halide: a primary study toward sequence-controlled polymerization upon template effect. J. Am. Chem. Soc. 2009, 131, 10808–10809.
- 36 Satoh, K.; Matsuda, M.; Nagai, K.; Kamigaito, M. AAB-sequence living radical chain copolymerization of naturally occurring limonene with maleimide: an end-to-end sequence-regulated copolymer. J. Am. Chem. Soc. 2010, 132, 10003–10005.
- 37 Satoh, K.; Ozawa, S.; Mizutani, M.; Nagai, K.; Kamigaito, M. Sequence-regulated vinyl copolymers by metal-catalysed step-growth radical polymerization. Nat. Commun. 2010, 1, 6.
- 38 Hibi, Y.; Ouchi, M.; Sawamoto, M. Sequence-regulated radical polymerization with a metal-templated monomer: repetitive ABA sequence by double cyclopolymerization. Angew. Chem. Int. Ed. 2011, 50, 7434–7437.
- 39 Nakatani, K.; Ogura, Y.; Koda, Y.; Terashima, T.; Sawamoto, M. Sequence-regulated copolymers via tandem catalysis of living radical polymerization and in situ transesterification. J. Am. Chem. Soc. 2012, 134, 4373–4383.
- 40 Zamfir, M.; Lutz, J. F. Ultra-precise insertion of functional monomers in chain-growth polymerizations. Nat. Commun. 2012, 3, 1138.
- 41 Zamfir, M.; Theato, P.; Lutz, J. F. Controlled folding of polystyrene single chains: design of asymmetric covalent bridges. Polym. Chem. 2012, 3, 1796–1802.
- 42 Ogura, Y.; Terashima, T.; Sawamoto, M. Synchronized Tandem Catalysis of Living Radical Polymerization and Transesterification: Methacrylate Gradient Copolymers with Extremely Broad Glass Transition Temperature. ACS Macro Lett. 2013, 2, 985–989.
- 43 Hibi, Y.; Ouchi, M.; Sawamoto, M. A strategy for sequence control in vinyl polymers via iterative controlled radical cyclization. Nat. Commun. 2016, 7, 11064.
- 44 Oh, D. Y.; Ouchi, M.; Nakanishi, T.; Ono, H.; Sawamoto, M. Iterative Radical Addition with a Special Monomer Carrying Bulky and Convertible Pendant: A New Concept toward Controlling the Sequence for Vinyl Polymers. ACS Macro Lett. 2016, 5, 745–749.
- 45
Ouchi, M.; Nakano, M.; Nakanishi, T.; Sawamoto, M. Alternating Sequence Control for Carboxylic Acid and Hydroxy Pendant Groups by Controlled Radical Cyclopolymerization of a Divinyl Monomer Carrying a Cleavable Spacer. Angew. Chem. Int. Ed. 2016, 128, 14804–14809.
10.1002/ange.201607169 Google Scholar
- 46 Hattori, G.; Hirai, Y.; Sawamoto, M.; Terashima, T. Self-assembly of PEG/dodecyl-graft amphiphilic copolymers in water: consequences of the monomer sequence and chain flexibility on uniform micelles. Polym. Chem. 2017, 8, 7248–7259.
- 47 Kametani, Y.; Nakano, M.; Yamamoto, T.; Ouchi, M.; Sawamoto, M. Cyclopolymerization of Cleavable Acrylate-Vinyl Ether Divinyl Monomer via Nitroxide-Mediated Radical Polymerization: Copolymer beyond Reactivity Ratio. ACS Macro Lett. 2017, 6, 754–757.
- 48 Matsuda, M.; Satoh, K.; Kamigaito, M. 1: 2-sequence-regulated radical copolymerization of naturally occurring terpenes with maleimide derivatives in fluorinated alcohol. J .Polym. Sci. A Polym. Chem. 2013, 51, 1774–1785.
- 49 Soejima, T.; Satoh, K.; Kamigaito, M. Main-Chain and Side-Chain Sequence-Regulated Vinyl Copolymers by Iterative Atom Transfer Radical Additions and 1:1 or 2:1 Alternating Radical Copolymerization. J. Am. Chem. Soc. 2016, 138, 944–954.
- 50
Ojika, M.; Satoh, K.; Kamigaito, M. BAB-random-C Monomer Sequence via Radical Terpolymerization of Limonene (A), Maleimide (B), and Methacrylate (C): Terpene Polymers with Randomly Distributed Periodic Sequences. Angew. Chem. Int. Ed. 2017, 129, 1815–1819.
10.1002/ange.201610768 Google Scholar
- 51 Satoh, K.; Hashimoto, H.; Kumagai, S.; Aoshima, H.; Uchiyama, M.; Ishibashi, R.; Fujiki, Y.; Kamigaito, M. One-shot controlled/living copolymerization for various comonomer sequence distributions via dual radical and cationic active species from RAFT terminals. Polym. Chem. 2017, 8, 5002–5011.
- 52 Hashimoto, H.; Takeshima, H.; Nagai, T.; Uchiyama, M.; Satoh, K.; Kamigaito, M. Valencene as a naturally occurring sesquiterpene monomer for radical copolymerization with maleimide to induce concurrent 1:1 and 1:2 propagation. Polym. Degrad. Stabil. 2019, 161, 183–190.
- 53 Satoh, K.; Ishizuka, K.; Hamada, T.; Handa, M.; Abe, T.; Ozawa, S.; Miyajima, M.; Kamigaito, M. Construction of Sequence-Regulated Vinyl Copolymers via Iterative Single Vinyl Monomer Additions and Subsequent Metal-Catalyzed Step-Growth Radical Polymerization. Macromolecules 2019, 52, 3327–3341.
- 54 Ji, Y.; Zhang, L.; Gu, X.; Zhang, W.; Zhou, N.; Zhang, Z.; Zhu, X. Sequence-Controlled Polymers with Furan-Protected Maleimide as a Latent Monomer. Angew. Chem. Int. Ed. 2017, 56, 2328–2333.
- 55 Meng, F.; Zhang, Y.; Ding, K.; Liu, B.; Han, F.; He, Y.; Zhou, N.; Zhang, Z.; Zhu, X. One-shot synthesis of sequence-controlled polymers with versatile succimide motifs for post-modifications. React. Funct. Polym. 2019, 134, 67–73.
- 56 Zhang, L.; Ji, Y.; Gu, X.; Zhang, W.; Zhou, N.; Zhang, Z.; Zhu, X. Synthesis of sequence-controlled polymers with pendent “clickable” or hydrophilic groups via latent monomer strategy. React. Funct. Polym. 2019, 138, 96–103.
- 57 Han, F.; Shi, Q.; Zhang, L.; Liu, B.; Zhang, Y.; Gao, Y.; Jia, R.; Zhang, Z.; Zhu, X. Stereoisomeric furan/maleimide adducts as latent monomers for one-shot sequence-controlled polymerization. Polym. Chem. 2020, 11, 1614–1620.
- 58 Zhang, L. Q.; Gao, Y.; Huang, Z. H.; Zhang, W.; Zhou, N. C.; Zhang, Z. B.; Zhu, X. L. Controllably Growing Topologies in One-shot RAFT Polymerization via Macro-latent Monomer Strategy. Chinese J. Polym. Sci. 2021, 39, 60–69.
- 59 Zhou, S.; Deng, X.; Yang, H. Biodegradable poly(ε-caprolactone)- poly(ethylene glycol) block copolymers: characterization and their use as drug carriers for a controlled delivery system. Biomaterials 2003, 24, 3563–3570.
- 60 Ghoroghchian, P. P.; Li, G.; Levine, D. H.; Davis, K. P.; Bates, F. S.; Hammer, D. A.; Therien, M. J. Bioresorbable vesicles formed through spontaneous self-assembly of amphiphilic poly(ethylene oxide)- block-polycaprolactone. Macromolecules 2006, 39, 1673–1675.
- 61 Yuan, W.; Yuan, J.; Zhang, F.; Xie, X. Syntheses, Characterization, and in vitro Degradation of Ethyl Cellulose-graft-poly(ε-caprolactone)- block-poly(l-lactide) Copolymers by Sequential Ring-Opening Polymerization. Biomacromolecules 2007, 8, 1101–1108.
- 62 Castillo, R. V.; Muller, A. J.; Raquez, J.; Dubois, P. Crystallization Kinetics and Morphology of Biodegradable Double Crystalline PLLA-b-PCL Diblock Copolymers. Macromolecules 2010, 43, 4149–4160.
- 63 Yang, C.; Wu, H.; Sun, J.; Hsiao, H.; Wang, T. Thermo-induced shape-memory PEG-PCL copolymer as a dual-drug-eluting biodegradable stent. ACS Appl. Mater. Interfaces 2013, 5, 10985–10994.
- 64 Gu, J.; Xiao, P.; Chen, P.; Zhang, L.; Wang, H.; Dai, L.; Song, L.; Huang, Y.; Zhang, J.; Chen, T. Functionalization of Biodegradable PLA Nonwoven Fabric as Superoleophilic and Superhydrophobic Material for Efficient Oil Absorption and Oil/Water Separation. ACS Appl. Mater. Interfaces 2017, 9, 5968–5973.
- 65 Shi, J.; Zhang, L.; Xiao, P.; Huang, Y.; Chen, P.; Wang, X.; Gu, J.; Zhang, J.; Chen, T. Biodegradable PLA Nonwoven Fabric with Controllable Wettability for Efficient Water Purification and Photocatalysis Degradation. ACS Sustainable Chem. Eng. 2018, 6, 2445–2452.
- 66 Lee, S. H.; Kim, S. H.; Han, Y. K.; Kim, Y. H. Synthesis and degradation of end-group-functionalized polylactide. J. Polym. Sci. A Polym. Chem. 2001, 39, 973–985.
- 67 Nakayama, Y.; Matsubara, N.; Cai, Z.; Shiono, T.; Inumaru, K.; Shirahama, H. Effect of end-group modification of poly(lactide)s by cinnamoyl chloride on their thermal stability. Polym. Degrad. Stabil. 2017, 141, 97–103.
- 68 Litvinov, V.; Deblieck, R.; Clair, C.; Van den fonteyne, W.; Lallam, A.; Kleppinger, R.; Ivanov, D. A.; Ries, M. E.; Boerakker, M. Molecular Structure, Phase Composition, Melting Behavior, and Chain Entanglements in the Amorphous Phase of High-Density Polyethylenes. Macromolecules 2020, 53, 5418–5433.
- 69 Villarroya, S.; Zhou, J.; Thurecht, K. J.; Howdle, S. M. Synthesis of Graft Copolymers by the Combination of ATRP and Enzymatic ROP in scCO2. Macromolecules 2006, 39, 9080–9086.
- 70 Zhang, J.; Ren, W.; Sun, X.; Meng, Y.; Du, B.; Zhang, X. Fully Degradable and Well-Defined Brush Copolymers from Combination of Living CO2/Epoxide Copolymerization, Thiol–Ene Click Reaction and ROP of ε-caprolactone. Macromolecules 2011, 44, 9882–9886.