Modular Total Synthesis of (–)-Palmyrolide A and (+)-(5S,7S)-Palmyrolide A via Ring-Closing Metathesis and Alkene Isomerization†
Yecai Lai
Laboratory of Advanced Catalysis and Synthesis, Department of Chemistry and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
Current address: Baiyunshan Pharmaceutical General Factory, Guangzhou Baiyunshan Pharmaceutical Holdings Co., Ltd., Guangzhou 510515, China.
Search for more papers by this authorCorresponding Author
Wei-Min Dai
Laboratory of Advanced Catalysis and Synthesis, Department of Chemistry and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
E-mail: [email protected]Search for more papers by this authorYecai Lai
Laboratory of Advanced Catalysis and Synthesis, Department of Chemistry and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
Current address: Baiyunshan Pharmaceutical General Factory, Guangzhou Baiyunshan Pharmaceutical Holdings Co., Ltd., Guangzhou 510515, China.
Search for more papers by this authorCorresponding Author
Wei-Min Dai
Laboratory of Advanced Catalysis and Synthesis, Department of Chemistry and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
E-mail: [email protected]Search for more papers by this authorDedicated to the 70th anniversary of Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences.
Abstract
A pentamodule assembly approach has been established for total synthesis of the naturally occurring (–)-palmyrolide A and (+)-5,7-epi-palmyrolide A. By using the racemic tert-butyl carbinol-containing alkyl iodide, the two diastereoisomeric macrolides could be obtained from the same sequence of reactions, demonstrating the flexibility of the multimodule assembly strategy for diverted total synthesis.
Supporting Information
Filename | Description |
---|---|
cjoc202000458-sup-0001-Supinfo.pdfPDF document, 10 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1For selected recent reviews, see: (a) Burja, A. M.; Banaigs, B.; Abou-Mansour, E.; Burgess, J. G.; Wright, P. C. Marine Cyanobacteria–A Prolific Source of Natural Products. Tetrahedron 2001, 57, 9347–9377; (b) Tan, L. T. Bioactive Natural Products from Marine Cyanobacteria for Drug Discovery. Phytochemistry 2007, 68, 954–979; (c) Rastogi, R. P.; Sinha, R. P. Biotechnological and Industrial Significance of Cyanobacterial Secondary Metabolites. Biotechnol. Adv. 2009, 27, 521–539; (d) Nunnery, J. K.; Mevers, E.; Gerwick, W. H. Biologically Active Secondary Metabolites from Marine Cyanobateria. Curr. Opin. Biotech. 2010, 21, 787–793; (e) Singh, R. K.; Tiwari, S. P.; Rai, A. K.; Mohapatra, T. M. Cyanobacteria: An Emerging Source for Drug Discovery. J. Antibiot. 2011, 64, 401–412; (f) Kehr, J.-C.; Picchi, D. G.; Dittmann, E. Natural Product Biosynthesis in Cyanobateria: A Treasure Trove of Unique Enzymes. Beilstein J. Org. Chem. 2011, 7, 1622–1635; (g) Salvador–Reyes, L. A.; Luesch, H. Biological Targets and Mechanisms of Action of Natural Products from Marine Cyanobacteria. Nat. Prod. Rep. 2015, 32, 478–503; (h) Niedermeyer, T. H. J. Anti-infective Natural Products from Cyanobacteria. Planta Med. 2015, 81, 1309–1325.
- 2For a review, see: Řezanka, T.; Kolouchová, I.; Čejková, A.; Sigler, K. Biosynthesis and Metabolic Pathways of Pivalic Acid. Appl. Microbiol. Biotechnol. 2012, 95, 1371–1376.
- 3 For the isolation and the proposed structure of palmyrolide A, see: Pereira, A. R.; Cao, Z.; Engene, N.; Soria-Mercado, I. E.; Murray, T. F.; Gerwick, W. H. Palmyrolide A, an Unusually Stabilized Neuroactive Macrolide from Palmyra Atoll Cyanobacteria. Org. Lett. 2010, 12, 4490–4493.
- 4For the total synthesis and the structural revision of palmyrolide A, see: (a) Tello-Aburto, R.; Johnson, E. M.; Valdez, C. K.; Maio, W. A. Asymmetric Total Synthesis and Absolute Stereochemistry of the Neuroactive Marine Macrolide Palmyrolide A. Org. Lett. 2012, 14, 2150–2153; (b) Tello-Aburto, R.; Newar, T. D.; Maio, W. A. Evolution of a Protecting-Group-Free Total Synthesis: Studies en Route to the Neuroactive Marine Macrolide (–)-Palmyrolide A. J. Org. Chem. 2012, 77, 6271–6289; (c) Wadsworth, A. D.; Furkert, D. P.; Sperry, J.; Brimble, M. A. Total Synthesis of the Initially Reported and Revised Structures of the Neuroprotective Agent Palmyrolide A. Org. Lett. 2012, 14, 5374–5377; (d) Phikhana, S. C.; Seetharamsingh, B.; Dangat, Y. B.; Vanka, K.; Reddy, D. S. Synthesis of Palmyrolide A and Its cis-Isomer and Mechanistic Insight into trans-cis Isomerization of the Enamide Macrocycle. Chem. Commun. 2013, 49, 3342–3344; (e) Sudhakar, G.; Reddy, K. J.; Nanubolu, J. B. Total Synthesis of Palmyrolide A and Its 5,7-epi Isomers. Tetrahedron 2013, 69, 2419–2429; (f) Wadsworth, A. D.; Furkert, D. P.; Brimble, M. A. Total Synthesis of the Macrocyclic N-Methyl Enamides Palmyrolide A and 2S-Sanctolide A. J. Org. Chem. 2014, 79, 11179–11193; (g) Borra, S.; Amrutapu, S. K.; Pabbaraja, S.; Singh, Y. J. Stereoselective Total Synthesis of Palmyrolide A via Intramolecular trans N-Methyl Enamide Formation. Tetrahedron Lett. 2016, 57, 4456–4459; (h) Yadav, J. S.; Suresh, B.; Srihari, P. Expedient Synthesis of Large-Ring trans-Enamide Macrolides by CuI-Mediated Intramolecular Coupling of Vinyl Iodide with Amide: Total Synthesis of Palmyrolide A. Eur. J. Org. Chem. 2016, 2509–2513.
- 5For the bioactivity of palmyrolide A and the synthetic analogues, see: (a) Mehrotra, S.; Duggan, B. M.; Tello-Aburto, R.; Newar, T. D.; Gerwick, W. H.; Murray, T. F.; Maio, W. A. Detailed Analysis of (–)-Palmyrolide A and Some Synthetic Derivatives as Voltage-Gated Sodium Channel Antagonists. J. Nat. Prod. 2014, 77, 2553–2560; (b) Philkhana, S. C.; Mehrotra, S.; Murray, T. F.; Reddy, S. Synthesis and Biological Evaluation of Palmyrolide A Macrocycles as Sodium Channel Blockers towards Neuroprotection. Org. Biomol. Chem. 2016, 14, 8457–8473.
- 6 For the isolation and the proposed planar structure of laingolide, see: Klein, D.; Braekman, J. C.; Daloze, D.; Hoffmann, L.; Demoulin, V. Laingolide, a Novel 15-Membered Macrolide from Lyngbya bouillonii (Cyanophyceae). Tetrahedron Lett. 1996, 37, 7519–7520.
- 7 For the isolation and the proposed planar structures of laingolide A and madangolide, see: Klein, D.; Braekman, J. C.; Daloze, D.; Hoffmann, L.; Castillo, G.; Demoulin, V. Madangolide and Laingolide A, Two Novel Macrolides from Lyngbya bouillonii (Cyanophyceae). J. Nat. Prod. 1999, 62, 934–936.
- 8 For the total synthesis of laingolide A diastereomers, see: Pomey, G.; Phansavath, P. Total Synthesis of Laingolide A Diastereomers. Synthesis 2015, 47, 1016–1023.
- 9 For the isolation and the proposed planar structure of laingolide B, see: Matthew, S.; Salvador, L. A.; Schupp, P. J.; Paul, V. J.; Luesch, H. Cytotoxic Halogenated Macrolides and Modified Peptides from the Apratoxin-Producing Marine Cyanobacterium Lyngbya bouillonii from Guam. J. Nat. Prod. 2010, 73, 1544–1552.
- 10For a synthesis of the C1–C9 fragment of laingolide B, see: Nitelet, A.; Jouvin, K.; Evano, G. Development of a General Copper-Catalyzed Vinyl Finkelstein Reaction–Application to the Synthesis of the C1–C9 Fragment of Laingolide B. Tetrahedron 2016, 72, 5972–5987.
- 11 For the isolation and the structure of apratoxin A, see: Luesch, H.; Yoshida, W. Y.; Moore, R. E.; Paul, V. J.; Corbett, T. H. Total Structure Determination of Apratoxin A, a Potent Novel Cytotoxin from the Marine Cyanobacterium Lyngbya majuscula. J. Am. Chem. Soc. 2001, 123, 5418–5423.
- 12For selected reviews on Ru-catalyzed RCM in total synthesis, see: (a) Fürstner, A. Olefin Metathesis and Beyond. Angew. Chem. Int. Ed. 2000, 39, 3012–3043; (b) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Metathesis Reactions in Total Synthesis. Angew. Chem. Int. Ed. 2005, 44, 4490–4527; (c) Gradillas, A.; Pérez-Castells, J. Macrocyclization by Ring-Closing Metathesis in the Total Synthesis of Natural Products: Reaction Conditions and Limitations. Angew. Chem. Int. Ed. 2006, 45, 6086–6101; (d) Fürstner, A. Metathesis in Total Synthesis. Chem. Commun. 2011, 47, 6505–6511; (e) Fürstner, A. Teaching Metathesis “Simple” Stereochemistry. Science 2013, 341, 1229713; (f) Hoveyda, A. H. Evolution of Catalytic Stereoselective Olefin Metathesis: From Ancillary Transformation to Purveyor of Stereochemical Identity. J. Org. Chem. 2014, 79, 4763–4792; (g) Fuwa, H.; Sasaki, M. Exploiting Ruthenium Carbene-Catalyzed Reactions in Total Synthesis of Marine Oxacyclic Natural Products. Bull. Chem. Soc. Jpn. 2016, 89, 1403–1415; (h) Cheng-Sánchez, I.; Sarabla, F. Recent Advances in Total Synthesis via Metathesis Reactions. Synthesis 2018, 50, 3749–3786.
- 13 Cui, C.; Dai, W.-M. Total Synthesis of Laingolide B Stereoisomers and Assignment of Absolute Configuration. Org. Lett. 2018, 20, 3358–3361.
- 14
Lai, Y. SmI2-Mediated Reductive Coupling of Acrylates/Crotonates for Diverted Total Synthesis of Designed Macrolactones, (–)-Palmyrolide A and Laingolide A. Ph.D.
Dissertation, The Hong Kong University of Science and Technology, Hong Kong, China, 2015.
10.14711/thesis-b1448842 Google Scholar
- 15 Lai, Y.; Sun, L.; Sit, M. K.; Wang, Y.; Dai, W.-M. Diastereoselective Synthesis of trans-3,5-Disubstituted Dihydrofuran-2-(3H)-ones via SmI2-Mediated Reductive Coupling of 2-Alkylacrylates of N,N-Diisopropyl-2-hydroxybenzamide with Aldehydes. Tetrahedron 2016, 72, 664–673.
- 16For reviews on B-alkyl Suzuki–Miyaura cross-coupling reaction, see: (a) Chemler, S. R.; Trauner, D.; Danishefsky, S. J. The B-Alkyl Suzuki–Miyaura Cross-Coupling Reaction: Development, Mechanistic Study, and Applications in Natural Product Synthesis. Angew. Chem. Int. Ed. 2001, 40, 4544–4568; (b) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Palladium-Catalyzed Cross-Coupling Reactions in Total Synthesis. Angew. Chem. Int. Ed. 2005, 44, 4442–4489; (c) Kotha, S.; Mandal, K. A Retrospective on the Design and Synthesis of Novel Molecules through a Strategic Consideration of Metathesis and Suzuki–Miyaura Cross-Coupling. Chem. Asian J. 2009, 4, 354–362; (d) Suzuki, A. Cross-Coupling Reactions of Organoboranes: An Easy Way to Construct C–C Bonds (Nobel Lecture). Angew. Chem. Int. Ed. 2011, 50, 6722–6737; (e) Jana, R.; Pathak, T. P.; Sigman, M. S. Advances in Transition Metal (Pd,Ni,Fe)-Catalyzed Cross-Coupling Reactions Using Alkyl-organometallics as Reaction Partners. Chem. Rev. 2011, 111, 1417–1492; (f) Seidel, G.; Fürstner, A. Suzuki Reactions of Extended Scope: the ‘9-MeO-9-BBN Variant’ as a Complementary Formate for Cross-Coupling. Chem. Commun. 2012, 48, 2055–2070; (g) Heravi, M. M.; Hashemi, E. Recent Applications of the Suzuki Reaction in Total Synthesis. Tetrahedron 2012, 68, 9145–9178.
- 17 Fürstner, A.; Seidel, G. Palladium-Catalyzed Arylation of Polar Organometallics Mediated by 9-Methoxy-9-borabicyclo[3.3.1]nonane: Suzuki Reactions of Extended Scope. Tetrahedron 1995, 51, 11165–11176.
- 18(a) Dai, W.-M.; Li, Y.; Zhang, Y.; Lai, K. W.; Wu, J. A Novel Class of Amide-Derived Air-Stable P,O-Ligands for Suzuki Cross-Coupling at Low Catalyst Loading. Tetrahedron Lett. 2004, 45, 1999–2001; (b) Dai, W.-M.; Zhang, Y. A Family of Simple Amide-Derived Air-Stable P,O-Ligands for Suzuki Cross-Coupling of Unactivated Aryl Chlorides. Tetrahedron Lett. 2005, 46, 1377–1381; (c) Jin, J.; Chen, Y.; Li, Y.; Wu, J.; Dai, W.-M. Total Synthesis of Amphidinolide Y by Formation of Trisubstituted (E)-Double Bond via Ring-Closing Metathesis of Densely Functionalized Alkenes. Org. Lett. 2007, 9, 2585–2588; (d) Dai, W.-M.; Li, Y.; Zhang, Y.; Yue, C.; Wu, J. Generation of an Aromatic Amide-Derived Phosphane (Aphos) Library by Self-Assisted Molecular Editing and Applications of Aphos in Room-Temperature Suzuki–Miyaura Reactions. Chem. Eur. J. 2008, 14, 5538–5554; (e) Sun, L.; Dai, W.-M. Determination of Absolute Configuration of 2-Methyl-2-(o-Tolyl)naphthalene and the Related Axially Chiral Biaryls. Tetrahedron 2011, 67, 9072–9079; (f) Ye, N.; Dai, W.-M. An Efficient and Reliable Catalyst System Using Hemilabile Aphos for B-Alkyl Suzuki–Miyaura Cross-Coupling with Alkenyl Halides. Eur. J. Org. Chem. 2013, 831–835; (g) Wang, Y.; Dai, W.-M. Synthesis of the Conjugated Tetraene Acid Side Chain of Mycolactone E by Suzuki–Miyaura Cross-Coupling Reaction of Alkenyl Boronates. Eur. J. Org. Chem. 2014, 323–330; (h) Wu, Y.-D.; Lai, Y.; Dai, W.-M. Synthesis of Two Diastereomeric C1–C7 Acid Fragments of Amphidinolide B Using B-Alkyl Suzuki–Miyaura Cross-Coupling as the Modular Assembly Step. ChemistrySelect 2016, 1, 1022–1027; (i) Zhang, W.; Ma, H.; Li, C.-C.; Dai, W.-M. Synthesis of the C6–C8 bis-Tetrahydrofuran Fragment of the Proposed Structure of Iriomoteolide-2a via Stepwise Double SN2 Cyclization Reactions. Tetrahedron 2019, 75, 1795–1807.
- 19 Nakamura, E.; Sekiya, K.; Kuwajima, I. Chiral Zinc Homoenolate of Methyl Isobutyrate. A New Building Block for the Synthesis of Chiral α-Methylesters. Tetrahedron Lett. 1987, 28, 337–340.
- 20For selected recent examples on using chiral zinc homoenolates in total synthesis, see: (a) Aoyagi, S.; Hirashima, S.; Saito, K.; Kibayashi, C. Convergent Approach to Pumiliotoxin Alkaloids. Asymmetric Total Synthesis of (+)-Pumiliotoxin A, B, and 225F. J. Org. Chem. 2002, 67, 5517–5526; (b) Corrêa, Jr. I. R.; Pilli, R. A. Total synthesis and Structural Elucidation of (−)-Delactonmycin. Angew. Chem. Int. Ed. 2003, 42, 3017–3020; (c) Francavilla, C.; Chen, W.; Kinder, Jr. F. R. Formal Total Synthesis of (+)-Discodermolide. Org. Lett. 2003, 5, 1233–1236; (d) Arai, N.; Chikaraishi, N.; Omura, S.; Kuwajima, I. First Total Synthesis of the Antitumor Compound (−)-Kazusamycin A and Absolute Structure Determination. Org. Lett. 2004, 6, 2845–2848; (e) Pantin, M.; Brimble, M. A.; Furkert, D. P. J. Org. Chem. 2018, 83, 7049–7059; (f) Lang, J. H.; Lindei, T. Synthesis of the Polyketide Section of Seragamide A and Related Cyclodepsipeptides via Negishi Cross Coupling. Beilstein J. Org. Chem. 2019, 15, 577–583. Also, see ref. 13.
- 21The enantiomerically enriched (3S,5R)-14 could be prepared by methylation[14] of (5R)-5-tert-butyldihydrofuran-2(3H)-one which is available by the known method, see: (a) Fukuzawa, S.; Seki, K.; Tatsuzawa, M.; Mutoh, K. A Facile Synthesis of Chiral γ-Butyrolactones in Extremely High Enantioselectivity Mediated by Samarium(II) Iodide. J. Am. Chem. Soc. 1997, 119, 1482–1483.