Efforts towards Practical and Sustainable Li/Na-Air Batteries
Kai Chen
State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022 China
University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorGang Huang
Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thu situ Designing a Gradient wal, 23955-6900 Saudi Arabia
Search for more papers by this authorCorresponding Author
Xin-Bo Zhang
State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022 China
University of Science and Technology of China, Hefei, Anhui, 230026 China
E-mail: [email protected]Search for more papers by this authorKai Chen
State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022 China
University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorGang Huang
Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thu situ Designing a Gradient wal, 23955-6900 Saudi Arabia
Search for more papers by this authorCorresponding Author
Xin-Bo Zhang
State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022 China
University of Science and Technology of China, Hefei, Anhui, 230026 China
E-mail: [email protected]Search for more papers by this authorAbstract
The Li-O2 batteries have attracted much attention due to their parallel theoretical energy density to gasoline. In the past 20 years, understanding and knowledge in Li-O2 battery have greatly deepened in elucidating the relationship between structure and performance. Our group has been focusing on the cathode engineering and anode protection strategy development in the past years, trying to make full use of the superiority of metal-air batteries towards applications. In this review, we aim to retrospect our efforts in developing practical, sustainable metal-air batteries. We will first introduce the basic working principle of Li-O2 batteries and our progresses in Li-O2 batteries with typical cathode designs and anode protection strategies, which have together promoted the large capacity, long life and low charge overpotential. We emphasize the designing art of carbon-based cathodes in this part along with a short talk on all-metal cathodes. The following part is our research in Na-O2 batteries including both cathode and anode optimizations. The differences between Li-O2 and Na-O2 batteries are also briefly discussed. Subsequently, our proof-of-concept work on Li-N2 battery, a new energy storage system and chemistry, is discussed with detailed information on the discharge product identification. Finally, we summarize our designed models and prototypes of flexible metal-air batteries that are promising to be used in flexible devices to deliver more power.
References
- 1(a) Lu, J.; Li, L.; Park, J. B.; Sun, Y. K.; Wu, F.; Amine, K. Aprotic and aqueous Li-O2 batteries. Chem. Rev. 2014, 114, 5611–5640; (b) Kwak, W. J.; Rosy; Sharon, D.; Xia, C.; Kim, H.; Johnson, L. R.; Bruce, P. G.; Nazar, L. F.; Sun, Y. K.; Frimer, A. A.; Noked, M.; Freunberger, S. A.; Aurbach, D. Lithium-Oxygen Batteries and Related Systems: Potential, Status, and Future. Chem. Rev. 2020, 120, 6626–6683; (c) Liu, T.; Vivek, J. P.; Zhao, E. W.; Lei, J.; Garcia-Araez, N.; Grey, C. P. Current Challenges and Routes Forward for Nonaqueous Lithium-Air Batteries. Chem. Rev. 2020, 120, 6558–6625; (d) Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2011, 11, 19–29.
- 2(a) Xu, J. J.; Chang, Z. W.; Wang, Y.; Liu, D. P.; Zhang, Y.; Zhang, X. B. Cathode Surface-Induced, Solvation-Mediated, Micrometer-Sized Li2O2 Cycling for Li-O2 Batteries. Adv. Mater. 2016, 28, 9620–9628; (b) Aetukuri, N. B.; McCloskey, B. D.; Garcia, J. M.; Krupp, L. E.; Viswanathan, V.; Luntz, A. C. Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li-O2 batteries. Nat. Chem. 2015, 7, 50–56.
- 3 McCloskey, B. D.; Speidel, A.; Scheffler, R.; Miller, D. C.; Viswanathan, V.; Hummelshoj, J. S.; Norskov, J. K.; Luntz, A. C. Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li-O2 Batteries. J. Phys. Chem. Lett. 2012, 3, 997–1001.
- 4 Liu, Q. C.; Jiang, Y. S.; Xu, J. J.; Xu, D.; Chang, Z. W.; Yin, Y. B.; Liu, W. Q.; Zhang, X. B. Hierarchical Co3O4 porous nanowires as an efficient bifunctional cathode catalyst for long life Li-O2 batteries. Nano Res. 2014, 8, 576–583.
- 5(a) Black, R.; Oh, S. H.; Lee, J. H.; Yim, T.; Adams, B.; Nazar, L. F. Screening for superoxide reactivity in Li-O2 batteries: effect on Li2O2/LiOH crystallization. J. Am. Chem. Soc. 2012, 134, 2902–2905; (b) Papp, J. K.; Forster, J. D.; Burke, C. M.; Kim, H. W.; Luntz, A. C.; Shelby, R. M.; Urban, J. J.; McCloskey, B. D. Poly(vinylidene fluoride) (PVDF) Binder Degradation in Li-O2 Batteries: A Consideration for the Characterization of Lithium Superoxide. J. Phys. Chem. Lett. 2017, 8, 1169–1174.
- 6(a) Liu, Q. C.; Xu, J. J.; Chang, Z. W.; Xu, D.; Yin, Y. B.; Yang, X. Y.; Liu, T.; Jiang, Y. S.; Yan, J. M.; Zhang, X. B. Growth of Ru-Modified Co3O4 Nanosheets on Carbon Textiles toward Flexible and Efficient Cathodes for Flexible Li-O2 Batteries. Part. Part. Syst. Char. 2016, 33, 500–505; (b) Liu, Q. C.; Xu, J. J.; Chang, Z. W.; Zhang, X. B. Direct electrodeposition of cobalt oxide nanosheets on carbon paper as free-standing cathode for Li–O2 battery. J. Mater. Chem. A 2014, 2, 6081–6085.
- 7 Yang, X. Y.; Xu, J. J.; Chang, Z. W.; Bao, D.; Yin, Y. B.; Liu, T.; Yan, J. M.; Liu, D. P.; Zhang, Y.; Zhang, X. B. Blood-Capillary-Inspired, Free- Standing, Flexible, and Low-Cost Super-Hydrophobic N-CNTs@SS Cathodes for High-Capacity, High-Rate, and Stable Li-Air Batteries. Adv. Energy Mater. 2018, 8, 1702242.
- 8 Yang, Z. D.; Yang, X. Y.; Liu, T.; Chang, Z. W.; Yin, Y. B.; Zhang, X. B.; Yan, J. M.; Jiang, Q. In Situ CVD Derived Co-N-C Composite as Highly Efficient Cathode for Flexible Li-O2 Batteries. Small 2018, 14, 1800590.
- 9 Yang, Z.-D.; Chang, Z.-W.; Zhang, Q.; Huang, K.; Zhang, X.-B. Decorating carbon nanofibers with Mo2C nanoparticles towards hierarchically porous and highly catalytic cathode for high-performance Li-O2 batteries. Sci. Bull. 2018, 63, 433–440.
- 10 Xu, J. J.; Xu, D.; Wang, Z. L.; Wang, H. G.; Zhang, L. L.; Zhang, X. B. Synthesis of perovskite-based porous La0.75Sr0.25MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium-oxygen batteries. Angew. Chem. Int. Ed. 2013, 52, 3887–3890.
- 11 Xu, J. J.; Wang, Z. L.; Xu, D.; Zhang, L. L.; Zhang, X. B. Tailoring Deposition and Morphology of Discharge Products Towards High-rate and Long-life Lithium-oxygen Batteries. Nat. Commun. 2013, 4, 2438.
- 12 Xu, J. J.; Wang, Z. L.; Xu, D.; Meng, F. Z.; Zhang, X. B. 3D ordered macroporous LaFeO3 as efficient electrocatalyst for Li–O2 batteries with enhanced rate capability and cyclic performance. Energy Environ. Sci. 2014, 7, 2213–2219.
- 13 Yin, Y. B.; Xu, J. J.; Liu, Q. C.; Zhang, X. B. Macroporous Interconnected Hollow Carbon Nanofibers Inspired by Golden-Toad Eggs toward a Binder-Free, High-Rate, and Flexible Electrode. Adv. Mater. 2016, 28, 7494–7500.
- 14(a) Li, F.; Tang, D. M.; Jian, Z.; Liu, D.; Golberg, D.; Yamada, A.; Zhou, H. Li-O2 battery based on highly efficient Sb-doped tin oxide supported Ru nanoparticles. Adv. Mater. 2014, 26, 4659–4664; (b) Li, F.; Tang, D. M.; Chen, Y.; Golberg, D.; Kitaura, H.; Zhang, T.; Yamada, A.; Zhou, H. Ru/ITO: a carbon-free cathode for nonaqueous Li-O2 battery. Nano Lett. 2013, 13, 4702–4707; (c) Han, X.; Cheng, F.; Chen, C.; Li, F.; Chen, J. A Co3O4@MnO2/Ni nanocomposite as a carbon- and binder- free cathode for rechargeable Li–O2 batteries. Inorg. Chem. Front. 2016, 3, 866–871.
- 15 Ottakam Thotiyl, M. M.; Freunberger, S. A.; Peng, Z.; Bruce, P. G. The carbon electrode in nonaqueous Li-O2 cells. J. Am. Chem. Soc. 2013, 135, 494–500.
- 16 Xu, J. J.; Chang, Z. W.; Yin, Y. B.; Zhang, X. B. Nanoengineered Ultralight and Robust All-Metal Cathode for High-Capacity, Stable Lithium-Oxygen Batteries. ACS Cent. Sci. 2017, 3, 598–604.
- 17 Shui, J. L.; Okasinski, J. S.; Kenesei, P.; Dobbs, H. A.; Zhao, D.; Almer, J. D.; Liu, D. J. Reversibility of anodic lithium in rechargeable lithium- oxygen batteries. Nat. Commun. 2013, 4, 2255.
- 18 Wang, J.; Huang, G.; Chen, K.; Zhang, X. B. An Adjustable-Porosity Plastic Crystal Electrolyte Enables High-Performance All-Solid-State Lithium-Oxygen Batteries. Angew. Chem. Int. Ed. 2020, 59, 9468–9473.
- 19 Yu, Y.; Hung, G.; Wang, J. Z.; Li, K.; Ma, J. L.; Zhang, X. B. In-situ Designing a Gradient Li+ Capture and Quasi-spontaneous Diffusion Anode Protection Layer Towards Long-life Li-O2 Batteries. Adv. Mater. 2020, 2004157.
- 20 Zhang, X.; Zhang, Q.; Wang, X. G.; Wang, C.; Chen, Y. N.; Xie, Z.; Zhou, Z. An Extremely Simple Method for Protecting Lithium Anodes in Li-O2 Batteries. Angew. Chem. Int. Ed. 2018, 57, 12814–12818.
- 21 Liao, K.; Wu, S.; Mu, X.; Lu, Q.; Han, M.; He, P.; Shao, Z.; Zhou, H. Developing a "Water-Defendable" and "Dendrite-Free" Lithium-Metal Anode Using a Simple and Promising GeCl4 Pretreatment Method. Adv. Mater. 2018, 1705711.
- 22 Adair, K. R.; Zhao, C.; Banis, M. N.; Zhao, Y.; Li, R.; Cai, M.; Sun, X. Highly Stable Li Metal Anode Interface via Molecular Layer Deposition Zircone Coatings for Long Life Next-Generation Battery Systems. Angew. Chem. Int. Ed. 2019, 58, 15797–15802.
- 23 Lee, D. J.; Lee, H.; Kim, Y. J.; Park, J. K.; Kim, H. T. Sustainable Redox Mediation for Lithium-Oxygen Batteries by a Composite Protective Layer on the Lithium-Metal Anode. Adv. Mater. 2016, 28, 857–863.
- 24 Kwak, W.-J.; Park, S.-J.; Jung, H.-G.; Sun, Y.-K. Optimized Concentration of Redox Mediator and Surface Protection of Li Metal for Maintenance of High Energy Efficiency in Li-O2 Batteries. Adv. Energy Mater. 2018, 8, 1702258.
- 25 Xu, J. J.; Liu, Q. C.; Yu, Y.; Wang, J.; Yan, J. M.; Zhang, X. B. In Situ Construction of Stable Tissue-Directed/Reinforced Bifunctional Separator/Protection Film on Lithium Anode for Lithium-Oxygen Batteries. Adv. Mater. 2017, 29, 1606552.
- 26 Ye, L.; Liao, M.; Sun, H.; Yang, Y.; Tang, C.; Zhao, Y.; Wang, L.; Xu, Y.; Zhang, L.; Wang, B.; Xu, F.; Sun, X.; Zhang, Y.; Dai, H.; Bruce, P. G.; Peng, H. Stabilizing Lithium into Cross-Stacked Nanotube Sheets with an Ultra-High Specific Capacity for Lithium Oxygen Batteries. Angew. Chem. Int. Ed. 2019, 58, 2437–2442.
- 27 Yu, Y.; Yin, Y.-B.; Ma, J.-L.; Chang, Z.-W.; Sun, T.; Zhu, Y.-H.; Yang, X.-Y.; Liu, T.; Zhang, X.-B. Designing a self-healing protective film on a lithium metal anode for long-cycle-life lithium-oxygen batteries. Energy Storage Mater. 2019, 18, 382–388.
- 28(a) Zhang, X. P.; Sun, Y. Y.; Sun, Z.; Yang, C. S.; Zhang, T. Anode interfacial layer formation via reductive ethyl detaching of organic iodide in lithium-oxygen batteries. Nat. Commun. 2019, 10, 3543; (b) Zhang, T.; Liao, K.; He, P.; Zhou, H. A self-defense redox mediator for efficient lithium–O2 batteries. Energy Environ. Sci. 2016, 9, 1024–1030.
- 29 Qiao, Y.; He, Y.; Wu, S.; Jiang, K.; Li, X.; Guo, S.; He, P.; Zhou, H. MOF-Based Separator in an Li–O2 Battery: An Effective Strategy to Restrain the Shuttling of Dual Redox Mediators. ACS Energy Lett. 2018, 3, 463–468.
- 30
Yu, Y.; Zhang, X.-B. In Situ Coupling of Colloidal Silica and Li Salt Anion toward Stable Li Anode for Long-Cycle-Life Li-O2 Batteries. Matter 2019, 1, 881–892.
10.1016/j.matt.2019.06.002 Google Scholar
- 31 Liu, T.; Feng, X. L.; Jin, X.; Shao, M. Z.; Su, Y. T.; Zhang, Y.; Zhang, X. B. Protecting the Lithium Metal Anode for a Safe Flexible Lithium-Air Battery in Ambient Air. Angew. Chem. Int. Ed. 2019, 58, 18240–18245.
- 32 Yu, Y.; Huang, G.; Du, J. Y.; Wang, J. Z.; Wang, Y.; Wu, Z. J.; Zhang, X. B. A Renaissance of N,N-Dimethylacetamide-Based Electrolyte to Promote the Cycling Stability of Li-O2 Batteries. Energy Environ. Sci. 2020, 13, 3075–3081.
- 33(a) Liang, X.; Pang, Q.; Kochetkov, I. R.; Sempere, M. S.; Huang, H.; Sun, X.; Nazar, L. F. A facile surface chemistry route to a stabilized lithium metal anode. Nat. Energy 2017, 2, 17119; (b) Zhao, J.; Zhou, G.; Yan, K.; Xie, J.; Li, Y.; Liao, L.; Jin, Y.; Liu, K.; Hsu, P. C.; Wang, J.; Cheng, H. M.; Cui, Y. Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes. Nat. Nanotechnol. 2017, 12, 993–999.
- 34 Wu, S.; Zhu, K.; Tang, J.; Liao, K.; Bai, S.; Yi, J.; Yamauchi, Y.; Ishida, M.; Zhou, H. A long-life lithium ion oxygen battery based on commercial silicon particles as the anode. Energy Environ. Sci. 2016, 9, 3262–3271.
- 35 Qin, L.; Zhai, D.; Lv, W.; Yang, W.; Huang, J.; Yao, S.; Cui, J.; Chong, W.-G.; Huang, J.-Q.; Kang, F.; Kim, J.-K.; Yang, Q.-H. A high-performance lithium ion oxygen battery consisting of Li2O2 cathode and lithiated aluminum anode with nafion membrane for reduced O2 crossover. Nano Energy 2017, 40, 258–263.
- 36 Chen, K.; Huang, G.; Ma, J. L.; Wang, J.; Yang, D. Y.; Chen, K.; Zhang, X. B. The Stabilization Effect of CO2 Chemistries in Li-Oxygen/CO2 Batteries. Angew. Chem. Int. Ed. 2020, 59, 16661–16667.
- 37
Wang, J.; Huang, G.; Yan, J.-M.; Ma, J.-L.; Liu, T.; Shi, M.-M.; Yu, Y.; Zhang, M.-M.; Tang, J.-L.; Zhang, X.-B. Hybrid solid electrolyte enabled dendrite-free Li anodes for high-performance quasi-solid-state lithium-oxygen batteries. Natl. Sci. Rev. 2020, DOI: https://doi.org/10.1093/nsr/nwaa150/5866534.
10.1093/nsr/nwaa150 Google Scholar
- 38 Hartmann, P.; Bender, C. L.; Vracar, M.; Durr, A. K.; Garsuch, A.; Janek, J.; Adelhelm, P. A rechargeable room-temperature sodium superoxide (NaO2) battery. Nat. Mater. 2013, 12, 228–232.
- 39 McCloskey, B. D.; Garcia, J. M.; Luntz, A. C. Chemical and Electrochemical Differences in Nonaqueous Li-O2 and Na-O2 Batteries. J. Phys. Chem. Lett. 2014, 5, 1230–1235.
- 40 Xia, C.; Black, R.; Fernandes, R.; Adams, B.; Nazar, L. F. The critical role of phase-transfer catalysis in aprotic sodium oxygen batteries. Nat. Chem. 2015, 7, 496–501.
- 41 Li, N.; Xu, D.; Bao, D.; Ma, J.; Zhang, X. A binder-free, flexible cathode for rechargeable Na-O2 batteries. Chin. J. Catal. 2016, 37, 1172–1179.
- 42 Cheon, J. Y.; Kim, K.; Sa, Y. J.; Sahgong, S. H.; Hong, Y.; Woo, J.; Yim, S.-D.; Jeong, H. Y.; Kim, Y.; Joo, S. H. Graphitic Nanoshell/Mesoporous Carbon Nanohybrids as Highly Efficient and Stable Bifunctional Oxygen Electrocatalysts for Rechargeable Aqueous Na-Air Batteries. Adv. Energy Mater. 2016, 6, 1501794.
- 43 Ma, J.-L.; Meng, F.-L.; Xu, D.; Zhang, X.-B. Co-embedded N-doped carbon fibers as highly efficient and binder-free cathode for Na–O2 batteries. Energy Storage Mater. 2017, 6, 1–8.
- 44 Ma, J.-l.; Li, N.; Zhang, Q.; Zhang, X.-b.; Wang, J.; Li, K.; Hao, X.-f.; Yan, J.-m. Synthesis of porous and metallic CoB nanosheets towards a highly efficient electrocatalyst for rechargeable Na–O2 batteries. Energy Environ. Sci. 2018, 11, 2833–2838.
- 45 Sun, B.; Kretschmer, K.; Xie, X.; Munroe, P.; Peng, Z.; Wang, G. Hierarchical Porous Carbon Spheres for High-Performance Na-O2 Batteries. Adv. Mater. 2017, 29, 1606816.
- 46 Zhao, S.; Qin, B.; Chan, K. Y.; Li, C. Y. V.; Li, F. Recent Development of Aprotic Na−O2 Batteries. Batteries Supercaps 2019, 2, 725–742.
- 47 Ma, J.-L.; Yin, Y.-B.; Liu, T.; Zhang, X.-B.; Yan, J.-M.; Jiang, Q. Suppressing Sodium Dendrites by Multifunctional Polyvinylidene Fluoride (PVDF) Interlayers with Nonthrough Pores and High Flux/Affinity of Sodium Ions toward Long Cycle Life Sodium Oxygen-Batteries. Adv. Funct. Mater. 2018, 28, 1703931.
- 48 Ma, J. L.; Meng, F. L.; Yu, Y.; Liu, D. P.; Yan, J. M.; Zhang, Y.; Zhang, X. B.; Jiang, Q. Prevention of dendrite growth and volume expansion to give high-performance aprotic bimetallic Li-Na alloy-O2 batteries. Nat. Chem. 2019, 11, 64–70.
- 49 Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X.; Shao, Y.; Engelhard, M. H.; Nie, Z.; Xiao, J.; Liu, X.; Sushko, P. V.; Liu, J.; Zhang, J. G. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 2013, 135, 4450–4456.
- 50 Ma, J.-L.; Bao, D.; Shi, M.-M.; Yan, J.-M.; Zhang, X.-B. Reversible Nitrogen Fixation Based on a Rechargeable Lithium-Nitrogen Battery for Energy Storage. Chem 2017, 2, 525–532.
- 51 Ge, B.; Wang, Y.; Sun, Y.; Li, Y.; Huang, J.; Peng, Q. A proof-of-concept of Na-N2 rechargeable battery. Energy Storage Mater. 2019, 23, 733–740.
- 52 Vajenine, G. V. Plasma-assisted synthesis and properties of Na3N. Inorg. Chem. 2007, 46, 5146–5148.
- 53 Liu, Q. C.; Li, L.; Xu, J. J.; Chang, Z. W.; Xu, D.; Yin, Y. B.; Yang, X. Y.; Liu, T.; Jiang, Y. S.; Yan, J. M.; Zhang, X. B. Flexible and Foldable Li-O2 Battery Based on Paper-Ink Cathode. Adv. Mater. 2015, 27, 8095–8101.
- 54 Liu, T.; Leskes, M.; Yu, W.; Moore, A. J.; Zhou, L.; Bayley, P. M.; Kim, G.; Grey, C. P. Cycling Li-O2 Batteries via LiOH Formation and Decomposition. Science 2015, 350, 530–533.
- 55 Liu, Q. C.; Liu, T.; Liu, D. P.; Li, Z. J.; Zhang, X. B.; Zhang, Y. A Flexible and Wearable Lithium-Oxygen Battery with Record Energy Density achieved by the Interlaced Architecture inspired by Bamboo Slips. Adv. Mater. 2016, 28, 8413–8418.
- 56 Liu, T.; Xu, J. J.; Liu, Q. C.; Chang, Z. W.; Yin, Y. B.; Yang, X. Y.; Zhang, X. B. Ultrathin, Lightweight, and Wearable Li-O2 Battery with High Robustness and Gravimetric/Volumetric Energy Density. Small 2017, 13, 1602952.
- 57 Yang, X. Y.; Xu, J. J.; Bao, D.; Chang, Z. W.; Liu, D. P.; Zhang, Y.; Zhang, X. B. High-Performance Integrated Self-Package Flexible Li-O2 Battery Based on Stable Composite Anode and Flexible Gas Diffusion Layer. Adv. Mater. 2017, 29, 1700378.
- 58 Yin, Y. B.; Yang, X. Y.; Chang, Z. W.; Zhu, Y. H.; Liu, T.; Yan, J. M.; Jiang, Q. A Water-/Fireproof Flexible Lithium-Oxygen Battery Achieved by Synergy of Novel Architecture and Multifunctional Separator. Adv. Mater. 2018, 30, 1703791.
- 59 Yang, X. Y.; Feng, X. L.; Jin, X.; Shao, M. Z.; Yan, B. L.; Yan, J. M.; Zhang, Y.; Zhang, X. B. An Illumination-Assisted Flexible Self-Powered Energy System Based on a Li-O2 Battery. Angew. Chem. Int. Ed. 2019, 58, 16411–16415.