Synergistic Catalysis with Azomethine Ylides
Liang Wei
Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 China
Search for more papers by this authorCorresponding Author
Chun-Jiang Wang
Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 China
State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin, 300071 China
E-mail: [email protected]Search for more papers by this authorLiang Wei
Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 China
Search for more papers by this authorCorresponding Author
Chun-Jiang Wang
Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 China
State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin, 300071 China
E-mail: [email protected]Search for more papers by this authorAbstract
Azomethine ylides are useful intermediates for the rapid construction of chiral N-containing compounds. However, its synthetic potential has not been fully developed due to the limited reaction models. In combination with synergistic catalysis and azomethine ylide chemistry, we have developed several types of novel catalytic system including Cu/Pd, Cu/Ir and PTC/Ir catalysis, which can convert readily-available azomethine ylides to various high-valued molecules such as unnatural α-amino acids, homoallylic amines and N-heterocycles. Compared with the traditional mono-catalysis, the synergistic catalyst system exhibits enhanced catalytic efficiency and chiral induction ability in many cases. In addition, we have demonstrated that these strategies could be applied in the construction of bioactive compounds and natural products.
References
- 1(a) Barrett, G. C. Amino Acids, Peptides and Proteins, Vol. 13, The Chemical Society, London, 1980, p. 1;
(b) Hunt, S. Chemistry and Biochemistry of the Amino Acids, Ed.: G. C. Barrett, Chapman and Hall, London, 1985, p. 55;
10.1007/978-94-009-4832-7_4 Google Scholar(c) Mutter, M. The Construction of New Proteins and Enzymes-A Prospect for the Future? Angew. Chem. Int. Ed. Engl. 1985, 24, 639–653; (d) Ohfune, Y. Stereoselective routes toward the synthesis of unusual amino acids. Acc. Chem. Res. 1992, 25, 360–366.
- 2(a) Degenkolb, T.; Berg, A.; Gams, W.; Schlegel, B.; Gräfe, U. The occurrence of peptaibols and structurally related peptaibiotics in fungi and their mass spectrometric identification via diagnostic fragment ions. J. Pept. Sci. Off. Publ. Eur. Pept. Soc. 2003, 9, 666–678;
(b) Degenkolb, T.; Gräfenhan, T.; Nirenberg, H. I.; Gams, W.; Brückner, H. Trichoderma brevicompactum complex: rich source of novel and recurrent plant-protective polypeptide antibiotics (peptaibiotics). J. Agric. Food Chem. 2003, 54, 7047–7061.
10.1021/jf060788q Google Scholar
- 3(a) Bellier, B.; McCort-Tranchenpain, I.; Ducos, B.; Danascimento, S.; Meudal, H.; Noble, F.; Garbay, C.; Roques, B. P. Synthesis and Biological Properties of New Constrained CCK-B Antagonists: Discrimination of Two Affinity States of the CCK-B Receptor on Transfected CHO Cells. J. Med. Chem. 1997, 40, 3947–3956; (b) Benedetti, E.; Gavuzzo, E.; Santini, A.; Kent, D. R.; Zhu, Y.-F.; Zhu, Q.; Mahr, C.; Goodman, M. Sweet and bitter taste: Structure and conformations of two aspartame dipeptide analogues. J. Pept. Sci. 1995, 1, 349–359; (c) Schiller, P. W.; Weltrowska, G.; Nguyen, T. M.-D.; Lemieux, C.; Chung, N. N.; Marsden, B. J.; Wilkes, B. C. Conformational restriction of the phenylalanine residue in a cyclic opioid peptide analog: effects on receptor selectivity and stereospecificity. J. Med. Chem. 1991, 34, 3125–3132.
- 4(a) Liu, X.; Lin, L.; Feng, X. Amide-based bifunctional organocatalysts in asymmetric reactions. Chem. Commun. 2009, 6145–6158; (b) Liu, X.; Dong, S.; Lin, L.; Feng, X. Chiral Amino Acids-Derived Catalysts and Ligands. Chin. J. Chem. 2018, 36, 791–797; (c) Liu, X.; Lin, L.; Feng, X. Chiral N,N’-Dioxides: New Ligands and Organocatalysts for Catalytic Asymmetric Reactions. Acc. Chem. Res. 2011, 44, 574–587.
- 5(a) Ohfune, Y.; Shinada, T. Enantio- and Diastereoselective Construction of α,α-Disubstituted α-Amino Acids for the Synthesis of Biologically Active Compounds. Eur. J. Org. Chem. 2005, 5127–5143; (b) Vogt, H.; Brase, S. Recent approaches towards the asymmetric synthesis of α,α-disubstituted α-amino acids. Org. Biomol. Chem. 2007, 5, 406–430; (c) Bera, K.; Namboothiri, I. N. N. Asymmetric Synthesis of Quaternary α-Amino Acids and Their Phosphonate Analogues. Asian J. Org. Chem. 2014, 3, 1234–1260.
- 6(a) Non-natural Amino Acids: Methods and Protocols, Eds.: L. Pollegioni; S. Servi, Springer, New York, 2012; pp. 1−249; (b) Ager, D. J. Amino Acids, Peptides and Proteins in Organic Chemistry, Vol. 1, Ed.: A. B. Hughes, Wiley-VCH, Weinheim, 2009, pp. 495−526.
- 7 Huisgen, R. In 1,3-Dipolar Cycloaddition Chemistry, Vol. 1, Ed.: A. Padwa, Wiley, New York, 1984, p. 1.
- 8(a) Adrio, J.; Carretero, J. C. Stereochemical diversity in pyrrolidine synthesis by catalytic asymmetric 1,3-dipolar cycloaddition of azomethine ylides. Chem. Commun. 2019, 55, 11979−11991; (b) Adrio, J.; Carretero, J. C. Recent Advances in the Catalytic Asymmetric 1,3-Dipolar Cycloaddition of Azomethine Ylides. Chem. Commun. 2014, 50, 12434−12446; (c) Hashimoto, T.; Maruoka, K. Recent Advances of Catalytic Asymmetric 1,3-Dipolar Cycloadditions. Chem. Rev. 2015, 115, 5366−5412; (d) Fang, X.; Wang, C.-J. Catalytic asymmetric construction of spiropyrrolidines via 1,3-dipolar cycloaddition of azomethine ylides. Org. Biomol. Chem. 2018, 16, 2591–2601; (e) Yu, J.; Shi, F.; Gong, L.-Z. Brønsted-Acid-Catalyzed Asymmetric Multicomponent Reactions for the Facile Synthesis of Highly Enantioenriched Structurally Diverse Nitrogenous Heterocycles. Acc. Chem. Res. 2011, 44, 1156–1171; (f) Mei, G.-J.; Shi, F. Catalytic asymmetric synthesis of spirooxindoles: recent developments. Chem. Commun. 2018, 54, 6607–6621; (g) Zou, X.-J.; Yang, W.-L.; Zhu, J.-Y.; Deng, W.-P. Catalytic Enantioselective Formal Synthesis of MDM2 Antagonist RG7388 and Its Analogues. Chin. J. Chem. 2020, 38, 435–438.
- 9(a) Wei, L.; Chang, X.; Wang, C.-J. Catalytic Asymmetric Reactions with N-Metallated Azomethine Ylides. Acc. Chem. Res. 2020, 53, 1084–1100; (b) Wei, L.; Xiao, L.; Hu, Y.-Z.; Wang, Z.-F.; Tao, H.-Y.; Wang, C.-J. Recent Advances in Metallated Azomethine Ylides for the Synthesis of Chiral Unnatural α-Amino Acids. Chin. J. Org. Chem. 2019, 39, 2119–2130.
- 10(a) Wang, C.-J.; Liang, G.; Xue, Z.-Y.; Gao, F. Highly Enantioselective 1,3-Dipolar Cycloaddition of Azomethine Ylides Catalyzed by Copper(I)/TF-BiphamPhos Complexes. J. Am. Chem. Soc. 2008, 130, 17250−17251; (b) Xue, Z.-Y.; Li, Q.-H.; Tao, H.-Y.; Wang, C.-J. A Facile Cu(I)/TF-BiphamPhos-Catalyzed Asymmetric Approach to Unnatural α-Amino Acid Derivatives Containing gem-Bisphosphonates. J. Am. Chem. Soc. 2011, 133, 11757–11765; (c) He, Z.-L.; Teng, H.-L.; Wang, C.-J. Fulvenes as Effective Dipolarophiles in Copper(I)-Catalyzed [6+3] Cycloaddition of Azomethine Ylides: Asymmetric Construction of Piperidine Derivatives. Angew. Chem. Int. Ed. 2013, 52, 2934−2938; (d) Teng, H.-L.; Yao, L.; Wang, C.-J. Cu(I)-Catalyzed Regio- and Stereoselective [6 + 3] Cycloaddition of Azomethine Ylides with Tropone: An Efficient Asymmetric Access to Bridged Azabicyclo[4.3.1]decadienes. J. Am. Chem. Soc. 2014, 136, 4075−4080; (e) Li, Q.-H.; Wei, L.; Wang, C.-J. Catalytic Asymmetric 1,3-Dipolar [3 + 6] Cycloaddition of Azomethine Ylides with 2-Acyl Cycloheptatrienes: Efficient Construction of Bridged Heterocycles Bearing Piperidine Moiety. J. Am. Chem. Soc. 2014, 136, 8685−8692; (f) Tong, M.-C.; Chen, X.; Tao, H.-Y.; Wang, C.-J. Catalytic asymmetric 1,3-dipolar cycloaddition of two different ylides: facile access to chiral 1,2,4-triazinane frameworks. Angew. Chem. Int. Ed. 2013, 52, 12377−12380; (g) Yan, D.; Li, Q.; Wang, C. A Facile Access to Fluorinated Pyrrolidines via Catalytic Asymmetric 1,3-Dipolar Cycloaddition of Azomethine Ylides with Methyl α-Fluoroacrylate. Chin. J. Chem. 2012, 30, 2714−2720; (h) Liu, T.; Li, Q.; He, Z.; Zhang, J.; Wang, C. Catalytic asymmetric construction of spiro pyrrolidines with contiguous quaternary centers via 1,3-dipolar cycloaddition of azomethine ylides. Chin. J. Catal. 2015, 36, 68−77.
- 11(a) Cooperative Catalysis: Designing Efficient Catalysts for Synthesis, Ed.: R. Peters, Wiley-VCH, 2015; (b) Allen, A. E.; MacMillan, D. W. C. Synergistic catalysis: A powerful synthetic strategy for new reaction development. Chem. Sci. 2012, 3, 633−658; (c) Chen, D.-F.; Han, Z.-Y.; Zhou, X.-L.; Gong, L.-Z. Asymmetric Organocatalysis Combined with Metal Catalysis: Concept, Proof of Concept, and Beyond. Acc. Chem. Res. 2014, 47, 2365−2377; (d) Inamdar, S. M.; Shinde, V. S.; Patil, N. T. Enantioselective cooperative catalysis. Org. Biomol. Chem. 2015, 13, 8116−8162; (e) Fu, J.; Huo, X.; Li, B.; Zhang, W. Cooperative bimetallic catalysis in asymmetric allylic substitution. Org. Biomol. Chem. 2017, 15, 9747−9759; (f) Zhang, S.; Wei, F.; Song, C.; Jia, J.; Xu, Z. Recent Advances of the Combination of Au/Acid Catalysis. Chin. J. Chem. 2014, 32, 937–956; (g) Gong, L.-Z. Asymmetric Organocatalysis Combined with Metal Catalysis: A Promising and Emerging Field. Acta Chim. Sinica 2018, 76, 817–818. For the earliest examples on dual metal-catalyzed asymmetric catalysis, see: (h) Sawamura, M.; Sudoh, M.; Ito, Y. An Enantioselective Two-Component Catalyst System: Rh−Pd-Catalyzed Allylic Alkylation of Activated Nitriles. J. Am. Chem. Soc. 1996, 118, 3309; (i) Smmis, G.; Danjo, H.; Jacobsen, E. N. Cooperative Dual Catalysis: Application to the Highly Enantioselective Conjugate Cyanation of Unsaturated Imides. J. Am. Chem. Soc. 2004, 126, 9928–9929.
- 12(a) Wang, M.; Wang, C.-J.; Lin, Z. Cu(I)/TF-BiphamPhos Catalyzed Reactions of Alkylidene Bisphosphates and Alkylidene Malonates with Azomethine Ylides: Michael Addition versus 1,3-Dipolar Cycloaddition. Organometallics 2012, 31, 7870−7876; (b) Tong, M.-C.; Li, J.; Tao, H.-Y.; Li, Y.-X.; Wang, C.-J. Unusual Ester-Directed Regiochemical Control in endo-Selective Asymmetric 1,3-Dipolar Cycloadditions of Azomethine Ylides with β-Sulfonyl Acrylates. Chem. Eur. J. 2011, 17, 12922−12927.
- 13(a) Teng, H.-L.; Luo, F.-L.; Tao, H.-Y.; Wang, C.-J. A Facile Cu(I)/BINAP- Catalyzed Asymmetric Approach to Functionalized Pyroglutamate Derivatives Bearing a Unique Quaternary Stereogenic Center. Org. Lett. 2011, 13, 5600−5603; (b) Teng, H.-L.; Huang, H.; Wang, C.-J. Catalytic Asymmetric Construction of Spiro(γ-butyrolactam-γ-butyrolactone) Moieties through Sequential Reactions of Cyclic Imino Esters with Morita–Baylis–Hillman Bromides. Chem. Eur. J. 2012, 18, 12614− 12618; (c) Xue, Z.-Y.; Song, Z.-M.; Wang, C.-J. Cu(I)/TF-BiphamPhos- catalyzed asymmetric Michael addition of cyclic ketimino esters to alkylidene malonates. Org. Biomol. Chem. 2015, 13, 5460–5466.
- 14(a) Malleron, J. L.; Fiaud, J. C.; Legros, J. Y. Handbook of Palladium- Catalyzed Organic Reactions, Academic Press, San Diego, 1997; (b) Trost, B. M.; Van Vranken, D. L. Asymmetric Transition Metal-Catalyzed Allylic Alkylations. Chem. Rev. 1996, 96, 395–422; (c) Trost, B. M. Designing a Receptor for Molecular Recognition in a Catalytic Synthetic Reaction: Allylic Alkylation. Acc. Chem. Res. 1996, 29, 355–364; (d) Tsuji, J. Palladium Reagents and Catalysts, Wiley, Chichester, 1995; (e) Lu, Z.; Ma, S. Metal-Catalyzed Enantioselective Allylation in Asymmetric Synthesis. Angew. Chem. Int. Ed. 2007, 47, 258–297; (f) Wang, R.; Luan, Y.; Ye, M. Transition Metal-Catalyzed Allylic C(sp3)-H Functionalization via η3-Allylmetal Intermediate. Chin. J. Chem. 2019, 37, 720–743.
- 15 You, S.-L.; Hou, X.-L.; Dai, L.-X.; Cao, B.-X.; Sun, J. Novel bis-N-[2-(diphenylphosphino)ferrocenylcarbonyl] diaminocyclohexane ligands: application in asymmetric allylic alkylation of imino esters with simple allyl carbonate. Chem. Commun. 2000, 1933–1934. And references cited therein.
- 16(a) Wei, L.; Xu, S.-M.; Zhu, Q.; Che, C.; Wang, C.-J. Synergistic Cu/Pd Catalysis for Enantioselective Allylic Alkylation of Aldimine Esters: Access to α,α-Disubstituted α-Amino Acids. Angew. Chem. Int. Ed. 2017, 56, 12312–12316; (b) Wei, L.; Xiao, L.; Wang, C.-J. Synergistic Cu/Pd Catalysis for Enantioselective Allylation of Ketimine Esters: The Direct Synthesis of α-Substituted α-Amino Acids and 2H-Pyrrols. Adv. Synth. Catal. 2018, 360, 4715–4719.
- 17(a) Huo, X.; He, R.; Fu, J.; Zhang, J.; Yang, G.; Zhang, W. Stereoselective and Site-Specific Allylic Alkylation of Amino Acids and Small Peptides via a Pd/Cu Dual Catalysis. J. Am. Chem. Soc. 2017, 139, 9819–9822; (b) Huo, X.; Fu, J.; He, X.; Chen, J.; Xie, F.; Zhang, W. Pd/Cu dual catalysis: highly enantioselective access to α-substituted α-amino acids and α-amino amides. Chem. Commun. 2018, 54, 599–602; (c) Liu, P.; Huo, X.; Li, B.; He, R.; Zhang, J.; Wang, T.; Xie, F.; Zhang, W. Stereoselective Allylic Alkylation of 1-Pyrroline-5-carboxylic Esters via a Pd/Cu Dual Catalysis. Org. Lett. 2018, 20, 6564–6568.
- 18 Liu, H.-C.; Hu, Y.-Z.; Wang, Z.-F.; Tao, H.-Y.; Wang, C.-J. Synergistic Cu/Pd-Catalyzed Asymmetric Allenylic Alkylation of Azomethine Ylides for the Construction of α-Allene-Substituted Nonproteinogenic α-Amino Acids. Chem. Eur. J. 2019, 25, 8681–8685.
- 19(a) Hartwig, J. F.; Pouy, M. J. Iridium-Catalyzed Allylic Substitution. Top. Organomet. Chem. 2011, 34, 169; (b) Qu, J.; Helmchen, G. Applications of Iridium-Catalyzed Asymmetric Allylic Substitution Reactions in Target-Oriented Synthesis. Acc. Chem. Res. 2017, 50, 2539–2555; (c) Shockley, S. E.; Hethcox, J. C.; Stoltz, B. M. Intermolecular Stereoselective Iridium-Catalyzed Allylic Alkylation: An Evolutionary Account. Synlett 2018, 29, 2481–2492; (d) Rössler, S. L.; Petrone, D. A.; Carreira, E. M. Iridium-Catalyzed Asymmetric Synthesis of Functionally Rich Molecules Enabled by (Phosphoramidite, Olefin) Ligands. Acc. Chem. Res. 2019, 52, 2657–2672; (e) Cheng, Q.; Tu, H.-F.; Zheng, C.; Qu, J.-P.; Helmchen, G.; You, S.-L. Iridium-Catalyzed Asymmetric Allylic Substitution Reactions. Chem. Rev. 2019, 119, 1855–1969.
- 20 Wei, L.; Zhu, Q.; Xu, S.-M.; Chang, X.; Wang, C.-J. Stereodivergent Synthesis of α,α-Disubstituted α-Amino Acids via Synergistic Cu/Ir Catalysis. J. Am. Chem. Soc. 2018, 140, 1508–1513.
- 21(a) Krautwald, S.; Carreira, E. M. Stereodivergence in Asymmetric Catalysis. J. Am. Chem. Soc. 2017, 139, 5627−5639; (b) Lin, L.; Feng, X. Catalytic Strategies for Diastereodivergent Synthesis. Chem. Eur. J. 2017, 23, 6464−6482; (c) Beletskaya, I. P.; Najera, C.; Yus, M. Stereodivergent Catalysis. Chem. Rev. 2018, 118, 5080–5200; (d) Hao, X.; Lin, L.; Tan, F.; Yin, C.; Liu, X.; Feng, X. Ligand Control of Diastereodivergency in Asymmetric Inverse Electron Demand Diels–Alder Reaction. ACS Catal. 2015, 5, 6052–6056; (e) Zheng, H.; Wang, Y.; Xu, C.; Xu, X.; Lin, L.; Liu, X.; Feng, X. Stereodivergent synthesis of vicinal quaternary-quaternary stereocenters and bioactive hyperolactones. Nat. Commun. 2018, 9, 1968.
- 22 Huo, X.; Zhang, J.; Fu, J.; He, R.; Zhang, W. Ir/Cu Dual Catalysis: Enantio- and Diastereodivergent Access to α,α-Disubstituted α-Amino Acids Bearing Vicinal Stereocenters. J. Am. Chem. Soc. 2018, 140, 2080−2084.
- 23(a) Morimoto, Y.; Takaishi, M.; Kinoshita, T.; Sakaguchi, K.; Shibata, K. Total synthesis and determination of the stereochemistry of 2-amino-3-cyclopropylbutanoic acid, a novel plant growth regulator isolated from the mushroom Amanita castanopsidis Hongo. Chem. Commun. 2002, 42–43; (b) Spangenberg, T.; Schoenfelder, A.; Breit, B.; Mann, A. A New Method for the Synthesis of Chiral β-Branched α-Amino Acids. Org. Lett. 2007, 9, 3881–3884.
- 24 Wu, H.-M.; Zhang, Z.; Xiao, F.; Wei, L.; Dong, X.-Q.; Wang, C.-J. Stereodivergent Synthesis of α-Quaternary Serine and Cysteine Derivatives Containing Two Contiguous Stereogenic Centers via Synergistic Cu/Ir Catalysis. Org. Lett. 2020, 22, 4852–4857.
- 25 Xu, S.-M.; Wei, L.; Shen, C.; Xiao, L.; Tao, H.-Y.; Wang, C.-J. Stereodivergent assembly of tetrahydro-γ-carbolines via synergistic catalytic asymmetric cascade reaction. Nat. Commun. 2019, 10, 5553.
- 26 Liu, W.-B.; Zheng, C.; Zhuo, C.-X.; Dai, L.-X.; You, S.-L. Iridium-catalyzed allylic alkylation reaction with N-aryl phosphoramidite ligands: scope and mechanistic studies. J. Am. Chem. Soc. 2012, 134, 4812–4821.
- 27 Wei, L.; Zhu, Q.; Xiao, L.; Tao, H.-Y.; Wang, C.-J. Synergistic catalysis for cascade allylation and 2-aza-cope rearrangement of azomethine ylides. Nat. Commun. 2019, 10, 1594.
- 28 Shirakawa, S.; Maruoka, K. Recent Developments in Asymmetric Phase-Transfer Reactions. Angew. Chem. Int. Ed. 2013, 52, 4312–4348.
- 29 Wei, L.; Xiao, L.; Wang, Z.-F.; Tao, H.-Y.; Wang, C.-J. Ir/Phase-Transfer-Catalysis Cooperatively Catalyzed Asymmetric Cascade Allylation/2-aza-Cope Rearrangement: An Efficient Route to Homoallylic Amines from Aldimine Esters. Chin. J. Chem. 2020, 38, 82–86.