Copper-Catalyzed Aerobic Oxidative Ring Expansion of Isatins: A Facile Entry to Isoquinolino-Fused Quinazolinones
Dahan Wang
Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105 China
Search for more papers by this authorCorresponding Author
Fuhong Xiao
Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105 China
E-mail: [email protected], [email protected]Search for more papers by this authorFeng Zhang
Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105 China
School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan, 410128 China
Search for more papers by this authorHuawen Huang
Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105 China
Search for more papers by this authorCorresponding Author
Guo-Jun Deng
Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105 China
E-mail: [email protected], [email protected]Search for more papers by this authorDahan Wang
Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105 China
Search for more papers by this authorCorresponding Author
Fuhong Xiao
Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105 China
E-mail: [email protected], [email protected]Search for more papers by this authorFeng Zhang
Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105 China
School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan, 410128 China
Search for more papers by this authorHuawen Huang
Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105 China
Search for more papers by this authorCorresponding Author
Guo-Jun Deng
Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105 China
E-mail: [email protected], [email protected]Search for more papers by this authorAbstract
A copper-catalyzed aerobic oxidative ring expansion reaction of isatins with 1,2,3,4-tetrahydroisoquinoline for the synthesis of tetracyclic quinazolinones has been developed. This reaction is performed smoothly under simple conditions to give the corresponding products in moderate to good yields with good functional group tolerance. The capacity of the resultant 5H-isoquinolino[1,2-b]quinazolin-8(6H)-one for a range of palladium-catalyzed directing C—H activation has been further demonstrated, thus giving a broader access to diverse tetracyclic quinazolinones.
Supporting Information
Filename | Description |
---|---|
cjoc202000368-sup-0001-Supinfo.pdfPDF document, 1.5 MB |
Appendix A1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1(a) Michael, J. P. Quinoline, Quinazoline and Acridone Alkaloids. Nat. Prod. Rep. 2007, 24, 223–246; (b) Mhaske, S. B.; Argade, N. P. The Chemistry of Recently Isolated Naturally Occurring Quinazolinone Alkaloids. Tetrahedron 2006, 62, 9787–9826; (c) Gatadi, S. T.; Lakshmi, V.; Nanduri, S. 4(3H)-Quinazolinone Derivatives: Promising Antibacterial Drug Leads. Eur. J. Med. Chem. 2019, 170, 157–172; (d) Kwon, S. H.; Seo, H. A.; Cheon, C. H. Total Synthesis of Luotonin A and Rutaecarpine from an Aldimine via the Designed Cyclization. Org. Lett. 2016, 18, 5280–5283; (e) Tseng, M. C.; Yang, H. Y.; Chu, Y. H. Total Synthesis of Asperlicin C, Circumdatin F, Demethylbenzomalvin A, Demethoxycircumdatin H, Sclerotigenin, and Other Fused Quinazolinones. Org. Biomol. Chem. 2010, 8, 419–427.
- 2(a) Liang, J. L.; Cha, H. C.; Jahng, Y. Recent Advances in the Studies on Luotonins. Molecules 2011, 16, 4861–4883; (b) Fang, J.; Zhou, J. Efficient Syntheses of 2,3-Disubstituted Natural Quinazolinones via Iridium Catalysis. Org. Biomol. Chem. 2012, 10, 2389–2391; (c) Li, Y.; Feng, T.; Liu, P.; Liu, C.; Wang, X.; Li, D.; Li, N.; Chen, M.; Xu, Y.; Si, S. Optimization of Rutaecarpine as ABCA1 Up-Regulator for Treating Atherosclerosis. ACS Med. Chem. Lett. 2014, 5, 884–888.
- 3(a) Cheng, R.; Guo, T.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. One-Pot Synthesis of Quinazolinones from Anthranilamides and Aldehydes via p-Toluenesulfonic Acid Catalyzed Cyclocondensation and Phenyliodine Diacetate Mediated Oxidative Dehydrogenation. Synthesis 2013, 45, 2998–3006; (b) Zhou, J.; Fang, J. One-Pot Synthesis of Quinazolinones via Iridium-Catalyzed Hydrogen Transfers. J. Org. Chem. 2011, 76, 7730–7736; (c) Kim, N. Y.; Cheon, C. H. Synthesis of Quinazolinones from Anthranilamides and Aldehydes via Metal-free Aerobic Oxidation in DMSO. Tetrahedron Lett. 2014, 55, 2340–2344; (d) Wei, H.; Li, T.; Zhou, Y.; Zhou, L.; Zeng, Q. Copper-Catalyzed Domino Synthesis of Quinazolin-4(3H)-ones from (Hetero)arylmethyl Halides, Bromoacetate, and Cinnamyl Bromide. Synthesis 2013, 45, 3349–3354; (e) Yin, X.; Tang, T.; Wang, J.-M.; Chen, Z.; Zhu, Y.-M.; Ji, S.-J. Palladium-Catalyzed One-Pot Synthesis of Quinazolinones via tert-Butyl Isocyanide Insertion. J. Org. Chem. 2014, 79, 5082–5087; (f) Wu, X.-F.; He, L.; Neumann, H.; Beller, M. Palladium-Catalyzed Carbonylative Synthesis of Quinazolinones from 2-Aminobenzamide and Aryl Bromides. Chem. - Eur. J. 2013, 19, 12635–12638; (g) Li, Z.; Dong, J.; Chen, X.; Li, Q.; Zhou, Y.; Yin, S. F. Metal- and Oxidant-Free Synthesis of Quinazolinones from β-Ketoesters with o-Aminobenzamides via Phosphorous Acid-Catalyzed Cyclocondensation and Selective C–C Bond Cleavage. J. Org. Chem. 2015, 80, 9392–9400.
- 4(a) Huang, G.; Roos, D.; Stadtmüller, P.; Decker, M. A Simple Heterocyclic Fusion Reaction and Its Application for Expeditious Syntheses of Rutaecarpine and Its Analogs. Tetrahedron Lett. 2014, 55, 3607–3609; (b) Xie, L.; Lu, C.; Jing, D.; Ou, X.; Zheng, K. Metal-Free Synthesis of Polycyclic Quinazolinones Enabled by a (NH4)2S2O8- Promoted Intramolecular Oxidative Cyclization. Eur. J. Org. Chem. 2019, 3649–3653; (c) Gholap, A. V. A.; Maity, S.; Schulzke, C.; Maiti, D.; Kapdi, A. R. Synthesis of Cu-Catalysed Quinazolinones Using a Csp3–H Functionalisation/Cyclisation Strategy Org. Biomol. Chem. 2017, 15, 7140–7146; (d) Chen, K.; Gao, B.; Shang, Y.; Du, J.; Gu, Q.; Wang, J. I2-Catalyzed Cross Dehydrogenative Coupling: Rapid Access to Benzoxazinones and Quinazolinones. Org. Biomol. Chem. 2017, 15, 8770–8779; (e) Jing, K.; Lu, C.; Chen, Z.; Jin, S.; Xie, L.; Meng, Z.; Su, Z.; Zheng, K. Light-Driven Intramolecular C−N Cross-Coupling via a Long-Lived Photoactive Photoisomer Complex. Angew. Chem. Int. Ed. 2019, 58, 14666–14672; (f) Lu, C.; Su, Z.; Jing, D.; Jin, S.; Xie, L.; Zheng, K. Intramolecular Reductive Cyclization of o-Nitroarenes via Biradical Recombination. Org. Lett. 2019, 21, 1438–1443; (g) Li, J.; Wang, Z.-B.; Xu, Y.; Lu, X.-C.; Zhu, S.-R.; Liu, L. Catalyst-Free Cyclization of Anthranils and Cyclic Amines: One-Step Synthesis of Rutaecarpine. Chem. Commun. 2019, 55, 12072–12075; (h) Ren, J.-W.; Zheng, L.; Ye, Z.-P.; Deng, Z.-X.; Xie, Z.-Z.; Xiao, J.-A.; Zhu, F.-W.; Xiang, H.-Y.; Chen, X.-Q.; Yang, H.; Organocatalytic, Enantioselective, Polarity-Matched Ring-Reorganization Domino Sequence Based on the 3-Oxindole Scaffold. Org. Lett. 2019, 21, 2166–2170.
- 5(a) Singh, G. S.; Desta, Z. Y. Isatins As Privileged Molecules in Design and Synthesis of Spiro-Fused Cyclic Frameworks. Chem. Rev. 2012, 112, 6104–6155; (b) Liu, Y.-C.; Zhang, R.; Wu, Q.-Y.; Chen, Q.; Yang, G.-F. Recent Developments in the Synthesis and Applications of Isatins. Org. Prep. Proced. Int. 2014, 46, 317–362; (c) Borad, M. A.; Bhoi, M. N.; Prajapati, N. P.; Patel, H. D. Review of Synthesis of Multispiro Heterocyclic Compounds from Isatin. Synth. Commun. 2014, 44, 1043–1057; (d) Zhao, H.-W.; Yang, Z.; Meng, W.; Tian, T.; Li, B.; Song, X.-Q.; Chen, X.-Q.; Pang, H.-L. Diastereo- and Enantioselective Synthesis of Chiral Pyrrolidine-Fused Spirooxindoles via Organocatalytic [3+2] 1,3-Dipolar Cycloaddition of Azomethine Ylides with Maleimides. Adv. Synth. Catal. 2015, 357, 2492–2502; (e) Sheng, F.-T.; Li, Z.-M.; Zhang, Y.-Z.; Sun, L.-X.; Zhang, Y.-C.; Tan, W.; Shi, F.; Atroposelective Synthesis of 3,3’-Bisindoles Bearing Axial and Central Chirality: Using Isatin-Derived Imines as Electrophiles. Chin. J. Chem. 2020, 38, 583–589.
- 6(a) Wang, B.-Q.; Zhang, C.-H.; Tian, X.-X.; Lin, J.; Yan, S.-J. Cascade Reaction of Isatins with 1,1-Enediamines: Synthesis of Multisubstituted Quinoline-4-carboxamides. Org. Lett. 2018, 20, 660–663; (b) Yu, F.; Yan, S.; Hu, L.; Wang, Y.; Lin, J. Cascade Reaction of Isatins with Heterocyclic Ketene Aminals: Synthesis of Imidazopyrroloquinoline Derivatives. Org. Lett. 2011, 13, 4782–4785; (c) Wang, H.; Li, L.; Lin, W.; Xu, P.; Huang, Z. An Efficient Synthesis of Pyrrolo[2,3,4-kl]acridin-1-one Derivatives Catalyzed by L-Proline. Org. Lett. 2012, 14, 4598–4601; (d) Jiang, B.; Wang, X.; Li, M.-Y.; Wu, Q.; Ye, Q.; Xu, H.-W.; Tu, S.-J. A Domino Synthetic Strategy Leading to Two-Carbon- Tethered Fused Acridine/Indole Pairs and Fused Acridine Derivatives. Org. Biomol. Chem. 2012, 10, 8533–8538; (e) Xu, H.; Zhou, B.; Zhou, P.; Zhou, J.; Shen, Y.-H.; Yu, F.-C.; Lu, L.-L. Insights into the Unexpected Chemoselectivity in Brønsted Acid Catalyzed Cyclization of Isatins with Enaminones: Convenient Synthesis of Pyrrolo[3,4-c]quinolin-1-ones and Spirooxindoles. Chem. Commun. 2016, 52, 8002–8005.
- 7(a) Li, P.-G.; Yan, C.; Zhu, S.; Liu, S.-H.; Zou, L.-H. Direct Construction of Benzimidazo[l,2-c]quinazolin-6-ones via Metal-Free Oxidative C–C Bond Cleavage. Org. Chem. Front. 2018, 5, 3464–3468; (b) Shi, G.; He, X.; Shang, Y.; Yang, C.; Xiang, L. Oxidative Rearrangement of Isatins with Arylamines Using H2O2 as Oxidant: A Facile Synthesis of Quinazoline-2,4-diones and Evaluation of Their Antibacterial Activity. Chin. J. Chem. 2017, 35, 1835–1843; (c) Tangella, Y.; Manasa, K. L.; Krishna, N. H.; Sridhar, B.; Kamal, A.; Babu, B. N. Regioselective Ring Expansion of Isatins with In Situ Generated α-Aryldiazomethanes: Direct Access to Viridicatin Alkaloids. Org. Lett. 2018, 20, 3639–3642.
- 8 Wang, C.; Zhang, L.; Ren, A.; Lu, P.; Wang, Y. Cu-Catalyzed Synthesis of Tryptanthrin Derivatives from Substituted Indoles. Org. Lett. 2013, 15, 2982–2985.
- 9 Liu, M.; Shu, M.; Yao, C.; Yin, G.; Wang, D.; Huang, J. Synthesis of Pyrido-Fused Quinazolinone Derivatives via Copper-Catalyzed Domino Reaction. Org. Lett. 2016, 18, 824–827.
- 10(a) Prakash, R.; Gogoi, S. Copper-Catalyzed C-N, C-O Coupling Reaction of Arylglyoxylic Acids with Isatins. Adv. Synth. Catal. 2016, 358, 3046–3049; (b) Wang, L.-C.; Du, S.; Chen, Z.; Wu, X.-F.; FeCl3-Mediated Synthesis of 2-(Trifluoromethyl)quinazolin-4(3H)- ones from Isatins and Trifluoroacetimidoyl Chlorides. Org. Lett. 2020, 22, 5567–5571
- 11(a) Jia, F.-C.; Zhou, Z.-W.; Xu, C.; Wu, Y.-D.; Wu, A.-X. Divergent Synthesis of Quinazolin-4(3H)-ones and Tryptanthrins Enabled by a tert-Butyl Hydroperoxide/K3PO4-Promoted Oxidative Cyclization of Isatins at Room Temperature. Org. Lett. 2016, 18, 2942–2945; (b) Zhou, Z.-W.; Jia, F.-C.; Xu, C.; Jiang, S.-F.; Wu, Y.-D.; Wu, A.-X. Temperature-Controlled Base-Promoted Cyclization for the Synthesis of 2-Amino-4H-benzo[d][1,3]thiazin-4-ones and 2-Thioxo-4(3H)- quinazolinones. Asian. J. Org. Chem. 2017, 6, 1773–1777; (c) Jiang, S.-F.; Xu, C.; Zhou, Z.-W.; Zhang, Q.; Wen, X.-H.; Jia, F.-C.; Wu, A.-X. Switchable Access to 3-Carboxylate-4-quinolones and 1-Vinyl-3-carboxylate-4-quinolones via Oxidative Cyclization of Isatins and Alkynes. Org. Lett. 2018, 20, 4231–4234; (d) Zhou, Z.-W.; Jia, F.-C.; Xu, C.; Jiang, S.-F.; Wu, Y.-D.; Wu, A.-X. A Concise Construction of 12H-benzo[4,5]thiazolo[2,3-b]quinazolin-12-ones via an Unusual TBHP/Na2CO3 Promoted Cascade Oxidative Cyclization and Interrupted Dimroth Rearrangement. Chem. Commun. 2017, 53, 1056–1059; (e) Jia, F.-C.; Chen, T.-Z.; Hu, X.-Q.; TFA/TBHP-Promoted Oxidative Cyclisation for the Construction of Tetracyclic Quinazolinones and Rutaecarpine. Org. Chem. Front. 2020, 7, 1635–1639.
- 12(a) Wang, H.; Xu, Z.; Deng, G.-J.; Huang, H. Selective Formation of 2-(2-Aminophenyl)benzothiazoles via Copper-Catalyzed Aerobic C−C Bond Cleavage of Isatins. Adv. Synth. Catal. 2020, 362, 1663–1668; (b) Wang, Z.; Ji, X.; Zhao, J.; Huang, H. Visible-Light-Mediated Photoredox Decarbonylative Minisci-type Alkylation with Aldehydes under Ambient Air Conditions. Green Chem. 2019, 21, 5512–5516; (c) Huang, H.; Qu, Z.; Ji, X.; Deng, G.-J. Three-Component bis-heterocycliation for Synthesis of 2-Aminobenzo [4,5]thieno[3,2-d]thiazoles. Org. Chem. Front. 2019, 6, 1146–1150; (d) Liu, S.; Zhao, F.; Chen, X.; Deng, G.; Huang, H. Aerobic Oxidative Functionalization of Indoles. Adv. Synth. Catal. 2020, 362, 3795–3823; (e) Wu, R.; Li, J.; Wang, Y.; Quan, Z.; Su, Y.; Huo, C. Copper-Catalyzed Aerobic Oxidative Dehydrogenative Ring-Opening Reaction of Glycine Esters with α′-Angelicalactone: Approach to Construct α-Amino-γ-Ketopimelates. Adv. Synth. Catal. 2019, 361, 3436–3440; (f) Xie, F.; Chen, Q.-H.; Xie, R.; Jiang, H.-F.; Zhang, M. MOF-Derived Nanocobalt for Oxidative Functionalization of Cyclic Amines to Quinazolinones with 2-Aminoarylmethanols. ACS Catal. 2018, 8, 5869–5874.
- 13(a) Cernak, T.; Dykstra, K. D.; Tyagarajan, S.; Vachael, P.; Krska, S. W. The Medicinal Chemist's Toolbox for Late Stage Functionalization of Drug-like Molecules. Chem. Soc. Rev. 2016, 45, 546–576; (b) Wencel-Delord, J.; Glorius, F. C–H Bond Activation Enables the Rapid Construction and Late-stage Diversification of Functional Molecules. Nat. Chem. 2013, 5, 369–375; (c) Yang, Q.-L.; Fang, P.; Mei, T.-S.; Recent Advances in Organic Electrochemical C-H Functionalization. Chin. J. Chem. 2018, 36, 338–352; (d) Liu, Y.-H.; Xia, Y.-N.; Shi, B.-F.; Ni-Catalyzed Chelation-Assisted Direct Functionalization of Inert C-H Bonds. Chin. J. Chem. 2020, 38, 635–662; (e) Zhan, M.; Song, P.; Jiao, J.; Li, P. Novel Chiral Ligands-Enabled Transition-Metal-Catalyzed Asymmetric C-H Borylation. Chin. J. Chem. 2020, 38, 665–667; (f) Zhang, Q.; Shi, B.-F.; From Reactivity and Regioselectivity to Stereoselectivity: An Odyssey of Designing PIP Amine and Related Directing Groups for C-H Activation. Chin. J. Chem. 2019, 37, 647–656; (g) Wang, P.; Deng, L.; Recent Advances in Iron-Catalyzed C-H Bond Amination via Iron Imido Intermediate, Chin. J. Chem. 2018, 36, 1222–1240.
- 14(a) Jia, C.; Kitamura, T.; Fujiwara, Y. Catalytic Functionalization of Arenes and Alkanes via C−H Bond Activation. Acc. Chem. Res. 2001, 34, 633–639; (b) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Palladium(II)-Catalyzed C-H Activation/C-C Cross-Coupling Reactions: Versatility and Practicality. Angew. Chem. Int. Ed. 2009, 48, 5094–5115; (c) Ackermann, L.; Vicente, R.; Kapdi, A. R. Transition-Metal- Catalyzed Direct Arylation of (Hetero)Arenes by C–H Bond Cleavage. Angew. Chem. Int. Ed. 2009, 48, 9792–9826; (d) Ackermann, L. Carboxylate-Assisted Ruthenium-Catalyzed Alkyne Annulations by C–H/Het–H Bond Functionalizations. Acc. Chem. Res. 2014, 47, 281–295; (e) Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; Zhang, Y. Transition Metal-Catalyzed C–H Bond Functionalizations by the Use of Diverse Directing Groups. Org. Chem. Front. 2015, 2, 1107–1295.
- 15(a) Dick, A. R.; Hull, K. L.; Sanford, M. S. A Highly Selective Catalytic Method for the Oxidative Functionalization of C−H Bonds. J. Am. Chem. Soc. 2004, 126, 2300–2301; (b) Qiu, R.; Reddy, V. P.; Iwasaki, T.; Kambe, N. The Palladium-Catalyzed Intermolecular C–H Chalcoge- nation of Arenes. J. Org. Chem. 2015, 80, 367–374; (c) Kim, J. Y.; Park, S. H.; Ryu, J.; Cho, H.; Kim, S. H.; Chang, S. Rhodium-Catalyzed Intermolecular Amidation of Arenes with Sulfonyl Azides via Chelation- Assisted C–H Bond Activation. J. Am. Chem. Soc. 2012, 134, 9110–9113; (d) Yu, W.-Y.; Sit, W. N.; Lai, K.-M.; Zhou, Z.; Chan, A. S. C. Palladium-Catalyzed Oxidative Ethoxycarbonylation of Aromatic C−H Bond with Diethyl Azodicarboxylate. J. Am. Chem. Soc. 2008, 130, 3304–3306.
- 16(a) Wang, F.-F.; Luo, C.-P.; Deng, G.-J.; Yang, L. C(sp3)–C(sp3) Bond Formation via Copper/Brønsted Acid Co-catalyzed C(sp3)–H Bond Oxidative Cross-Dehydrogenative-Coupling (CDC) of Azaarenes. Green Chem. 2014, 16, 2428–2431; (b) Li, C.-J. Cross-Dehydrogenative Coupling (CDC): Exploring C−C Bond Formations beyond Functional Group Transformations. Acc. Chem. Res. 2009, 42, 335–344.