Ruthenium(II) Complexes Bearing Schiff Base Ligands for Efficient Acceptorless Dehydrogenation of Secondary Alcohols†
Zhiqiang Hao
Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, Hebei, 050024 China
Search for more papers by this authorKang Liu
Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, Hebei, 050024 China
Search for more papers by this authorQi Feng
Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, Hebei, 050024 China
Search for more papers by this authorQing Dong
Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, Hebei, 050024 China
Search for more papers by this authorCorresponding Author
Dongzhu Ma
Department of Environment and Chemical Engineering, Hebei College of Industry and Technology, Shijiazhuang, Hebei, 050091 China
E-mail: [email protected], [email protected]Search for more papers by this authorZhangang Han
Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, Hebei, 050024 China
Search for more papers by this authorGuo-Liang Lu
Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
Search for more papers by this authorCorresponding Author
Jin Lin
Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, Hebei, 050024 China
E-mail: [email protected], [email protected]Search for more papers by this authorZhiqiang Hao
Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, Hebei, 050024 China
Search for more papers by this authorKang Liu
Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, Hebei, 050024 China
Search for more papers by this authorQi Feng
Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, Hebei, 050024 China
Search for more papers by this authorQing Dong
Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, Hebei, 050024 China
Search for more papers by this authorCorresponding Author
Dongzhu Ma
Department of Environment and Chemical Engineering, Hebei College of Industry and Technology, Shijiazhuang, Hebei, 050091 China
E-mail: [email protected], [email protected]Search for more papers by this authorZhangang Han
Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, Hebei, 050024 China
Search for more papers by this authorGuo-Liang Lu
Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
Search for more papers by this authorCorresponding Author
Jin Lin
Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, Hebei, 050024 China
E-mail: [email protected], [email protected]Search for more papers by this authorDedicated to the 30th Anniversary of State Key Laboratory of Organometallic Chemistry.
Abstract
Four ruthenium(II) complexes 1—4 [RN=CH-(2,4-(tBu)2C6H2O)]RuH(PPh3)2(CO) (R = C6H5, 1; R = 4-MeC6H4, 2; R = 4-ClC6H4, 3; R = 4-BrC6H4, 4) bearing Schiff base ligands were prepared by treating RuHClCO(PPh3)3 with RN=CH-(2,4-(tBu)2C6H2OH (L1—L4) in the presence of triethylamine. Their structures were fully characterized by elemental analysis, IR, NMR spectroscopy and X-ray crystallography. These Ru(II) complexes exhibit high catalytic performance and good functional-group compatibility in the acceptorless dehydrogenation of secondary alcohols, affording the corresponding ketones in 82%—94% yields.
Supporting Information
Filename | Description |
---|---|
cjoc202000363-sup-0001-Supinfo.pdfPDF document, 720.6 KB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1(a) Mallat, T.; Baiker, A. Oxidation of Alcohols with Molecular Oxygen on Solid Catalysts. Chem. Rev. 2004, 104, 3037–3058; (b) Parmeggiani, C.; Cardona, F. Transition metal based catalysts in the aerobic oxidation of alcohols. Green Chem. 2012, 14, 547–564; (c) Matsumoto, T.; Ueno, M.; Wang, N.; Kobayashi, S. Recent advances in immobilized metal catalysts for environmentally benign oxidation of alcohols. Chem.-Asian J. 2008, 3, 196–214; (d) Steves, J. E.; Stahl, S. S. Copper(I)/ABNO-Catalyzed Aerobic Alcohol Oxidation: Alleviating Steric and Electronic Constraints of Cu/TEMPO Catalyst Systems. J. Am. Chem. Soc. 2013, 135, 15742–15745.
- 2(a) Cardona, F.; Parmeggiani, C. Transition Metal Catalysis in Aerobic Alcohol Oxidation, Royal Society of Chemistry, London, U.K., 2015; (b) Graves, C. R.; Zeng, B. S.; Nguyen, S. T. Efficient and Selective Al-Catalyzed Alcohol Oxidation via Oppenauer Chemistry. J. Am. Chem. Soc. 2006, 128, 12596–12597; (c) Ballester, J.; Caminade, A. M.; Majoral, J. P.; Taillefer, M.; Ouali, A. Efficient and Eco-Compatible Transition Metal-Free Oppenauer-Type Oxidation of Alcohols. Catal. Commun. 2014, 47, 58–62.
- 3(a) Tojo, G.; Fernandez, M. Oxidations of Alcohols to Aldehydes and Ketones, Springer, New York, 2006; (b) Yamaguchi, K.; Mizuno, N. Green functional group transformations by supported ruthenium hydroxide catalysts. Synlett 2010, 16, 2365–2382; (c) Brink, G. J. T.; Arends, I. W. C. E.; Sheldon, R. A. Green, Catalytic Oxidation of Alcohols in Water. Science 2000, 287, 1636–1639.
- 4(a) Lombardo, M.; Trombini, C. α-Hydroxyallylation reaction of carbonyl compounds. Chem. Rev. 2007, 107, 3843–3879; (b) Spasyuk, D.; Gusev, D. G. Acceptorless Dehydrogenative Coupling of Ethanol and Hydrogenation of Esters and Imines. Organometallics 2012, 31, 5239–5242.
- 5(a) Pan, B.; Liu, B.; Yue, E.; Liu, Q.; Yang, X.; Wang, Z.; Sun, W. H. Effect of ceria crystal plane on the physicochemical and catalytic properties of Pd/ceria for CO and propane oxidation. ACS Catal. 2016, 6, 1247−1253; (b) Ma, W.; Zhang, X.; Fan, J.; Liu, Y.; Tang, W.; Xue, D.; Li, C.; Xiao, J.; Wang, C. Iron-Catalyzed Anti-Markovnikov Hydroamination and Hydroamidation of Allylic Alcohols. J. Am. Chem. Soc. 2019, 141, 13506–13515; (c) Koh, M. J.; Khan, R. K. M.; Torker, S.; Yu, M.; Mikus, M. S.; Hoveyda, A. H. High-value alcohols and higher-oxidation-state compounds by catalytic Z-selective cross-metathesis. Nature 2015, 517, 181–186.
- 6 Stevens, R. V.; Chapman, K. T.; Weller, H. N. Convenient and inexpensive procedure for oxidation of secondary alcohols to ketones. J. Org. Chem. 1980, 45, 2030–2032.
- 7(a) Highet, R. J.; Wildman, W. C. Solid Manganese Dioxide as an Oxidizing Agent. J. Am. Chem. Soc. 1955, 77, 4399–4401; (b) Fatiadi, A. J. Adsorption as the first step in the solid-state oxidation of benzenehexol with active manganese dioxide. J. Chem. Soc. 1971, 5, 889–894.
- 8(a) Sieffert, N.; Buehl, M. Hydrogen Generation from Alcohols Catalyzed by Ruthenium-Triphenylphosphine Complexes: Multiple Reaction Pathways. J. Am. Chem. Soc. 2010, 132, 8056–8070; (b) Uyanik, M.; Ishihara, K. Hypervalent iodine-mediated oxidation of alcohols. Chem. Commun. 2009, 16, 2086–2099.
- 9For selected examples, see: (a) Sigman, M. S.; Jensen, D. R. Ligand- Modulated Palladium-Catalyzed Aerobic Alcohol Oxidations. Acc. Chem. Res. 2006, 39, 221–229; (b) Ryland, B. L.; Stahl, S. S. Practical Aerobic Oxidations of Alcohols and Amines with Homogeneous Copper/TEMPO and Related Catalyst Systems. Angew. Chem. Int. Ed. 2014, 53, 8824–8838; (c) Allen, S. E.; Walvoord, R. R.; Padilla-Salinas, R.; Kozlowski, M. C. Aerobic Copper-Catalyzed Organic Reactions. Chem. Rev. 2013, 113, 6234–6458; (d) Sheldon, R. A.; Arends, I. W. C. E.; Ten Brink, G. J.; Dijksman, A. Green, Catalytic Oxidations of Alcohols. Acc. Chem. Res. 2002, 35, 774–781; (e) Cao, Q.; Dornan, L. M.; Rogan, L.; Hughes, N. L.; Muldoon, M. J. Aerobic oxidation catalysis with stable radicals. Chem. Commun. 2014, 50, 4524–4543.
- 10(a) Wang, L.; Shang, S.; Li, G.; Ren, L.; Lv, Y.; Gao, S. Iron/ABNO-Catalyzed Aerobic Oxidation of Alcohols and Ketones under Ambient Atmosphere. J. Org. Chem. 2016, 81, 2189–2193; (b) Wu, J.; Liu, Y.; Ma, X.; Liu, P.; Gu, C.; Dai, B. Cu(II)-Catalyzed Ligand-Free Oxidation of Diarylmethanes and Second Alcohols in Water. Chin. J. Chem. 2017, 35, 1391–1395; (c) Zhai, D.; Ma, S. Copper catalysis for highly selective aerobic oxidation of alcohols to aldehydes/ketones. Org. Chem. Front. 2019, 6, 3101–3106; (d) Liu, X. H.; Yu, H. Y.; Xue, C.; Zhou, X. T.; Ji, H. B. Cyclohexene Promoted Efficient Biomimetic Oxidation of Alcohols to Carbonyl Compounds Catalyzed by Manganese Porphyrin under Mild Conditions. Chin. J. Chem. 2020, 38, 458–464.
- 11(a) Noyori, R.; Aoki, M.; Sato, K. Green oxidation with aqueous hydrogen peroxide. Chem. Commun. 2003, 1977–1986; (b) Miao, C.; Li, X. X.; Lee, Y. M.; Xia, C.; Wang, Y.; Nam, W.; Sun, W. Manganese complex-catalyzed oxidation and oxidative kinetic resolution of secondary alcohols by hydrogen peroxide. Chem. Sci. 2017, 8, 7476–7482; (c) Zhou, X. T.; Ji, H.; Liu, S. G. Solvent-free selective oxidation of primary and secondary alcohols catalyzed by ruthenium-bis(benzimidazole) pyridinedicarboxylate complex using hydrogen peroxide as an oxidant. Tetrahedron Lett. 2013, 54, 3882–3885; (d) Syiemlieh, I.; Asthana, M.; Lal, R. A. Reactivity and Catalytic Activity of Homobimetallic Vanadium(V) Complex Derived from Bis(5-chlorosalicylaldehyde) oxaloyldihydrazone Ligand. Appl. Organomet. Chem. 2019, 33, e4984; (e) Wang, J. X.; Zhou, X. T.; Han, Q.; Guo, X. X.; Liu, X. H.; Xue, C.; Ji, H. B. Efficient and selective oxidation of alcohols to carbonyl compounds at room temperature by a ruthenium complex catalyst and hydrogen peroxide. New J. Chem. 2019, 43, 19415–19421; (f) Dai, W.; Lv, Y.; Wang, L.; Shang, S.; Chen, B.; Li, G.; Gao, S. Highly efficient oxidation of alcohols catalyzed by a porphyrin-inspired manganese complex. Chem. Commun. 2015, 51, 11268–11271.
- 12(a) Su, Y.; Zhang, L.; Jiao, N. Utilization of Natural Sunlight and Air in the Aerobic Oxidation of Benzyl Halides. Org. Lett. 2011, 13, 2168–2171; (b) Liu, Y.; Yan, Y.; Xue, D.; Wang, Z.; Xiao, J.; Wang, C. Highly Efficient Binuclear Copper-catalyzed Oxidation of N,N-Dimethylanilines with O2. ChemCatChem 2020, 12, 2221–2225; (c) Wang, Y.; Chen, X.; Jin, H.; Wang, Y. Mild and Practical Dirhodium(II)/NHPI- Mediated Allylic and Benzylic Oxidations with Air as the Oxidant. Chem.-Eur. J. 2019, 25, 14273–14277; (d) Zheng, G.; Liu, C.; Wang, Q.; Wang, M.; Yang, G. Metal-Free: An Efficient and Selective Catalytic Aerobic Oxidation of Hydrocarbons with Oxime and N-Hydroxyphthalimide. Adv. Synth. Catal. 2009, 351, 2638–2642.
- 13(a) Ho, Y. A.; Paffenholz, E.; Kim, H. J.; Orgis, B.; Rueping, M.; Fabry, D. C. Catalytic Wacker-type Oxidations Using Visible Light Photoredox Catalysis. ChemCatChem 2019, 11, 1889–1892; (b) Song, T.; Ma, Z.; Ren, P.; Yuan, Y.; Xiao, J.; Yang, Y. A Bifunctional Iron Nanocomposite Catalyst for Efficient Oxidation of Alkenes to Ketones and 1,2-Diketones. ACS Catal. 2020, 10, 4617–4629; (c) Sharma, N.; Sharma, A.; Kumar, R.; Shard, A.; Sinha, A. K. One-Pot Two-Step Oxidative Cleavage of 1,2-Arylalkenes to Aryl ketones Instead of Arylaldehydes in an Aqueous Medium: a Complementary Approach to Ozonolysis. Eur. J. Org. Chem. 2010, 31, 6025–6032; (d) Fraile, J. M.; García, N.; Mayoral, J. A.; Santomauro, F. G.; Guidotti, M. Multifunctional Catalysis Promoted by Solvent Effects: Ti-MCM-41 for a One-Pot, Four-Step, Epoxidation-Rearrangement-Oxidation-Decarboxylatio Reaction Sequence on Stilbenes and Styrenes. ACS Catal. 2015, 5, 3552–3561.
- 14 For selected reviews, see (a) Crabtree, R. H. Homogeneous Transition Metal Catalysis of Acceptorless Dehydrogenative Alcohol Oxidation: Applications in Hydrogen Storage and to Heterocycle Synthesis. Chem. Rev. 2017, 13, 9228–9246; (b) Dobereiner, G. E.; Crabtree, R. H. Dehydrogenation as a Substrate-Activating Strategy in Homogeneous Transition-Metal Catalysis. Chem. Rev. 2010, 110, 681–703; (c) Gunanathan, C.; Milstein, D. ChemInform Abstract: Applications of Acceptorless Dehydrogenation and Related Transformations in Chemical Synthesis. Science 2013, 341, 249–260; (d) Mukherjee, A.; Milstein, D. Homogeneous Catalysis by Cobalt and Manganese Pincer Complexes. ACS Catal. 2018, 8, 11435–11469; (e) Kallmeier, F.; Kempe, R. Manganese Complexes for (De)Hydrogenation Catalysis: A Comparison to Cobalt and Iron Catalysts. Angew. Chem. Int. Ed. 2018, 57, 46–60; (f) Li, H.; Goncalves, T. P.; Lupp, D.; Huang, K. W. PN3(P)-Pincer Complexes: Cooperative Catalysis and Beyond. ACS catal. 2019, 9, 1619–1629; (g) Chelucci, G. Ruthenium and osmium complexes in C-C bond-forming reactions by borrowing hydrogen. Coord. Chem. Rev. 2017, 331, 1–36.
- 15(a) Hosseini, S. A.; Wahid, M. A. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renew. Sust. Energ. Rev. 2016, 57, 850–866; (b) Armaroli, N.; Balzani, V. The Hydrogen Issue. ChemSusChem 2011, 4, 21–36; (c) Clot, E.; Eisenstein, O.; Crabtree, R. H. Computational structure-activity relationships in H2 storage: How placement of N atoms affects release temperatures in organic liquid storage materials. Chem. Commun. 2007, 22, 2231–2233.
- 16 For selected examples, see (a) Polukeev, A. V.; Petrovskii, P. V.; Peregudov, A. S.; Ezernitskaya, M. G.; Koridze, A. A. Dehydrogenation of Alcohols by Bis(phosphinite) Benzene Based and Bis(phosphine) Ruthenocene Based Iridium Pincer Complexes. Organometallics 2013, 32, 1000–1015; (b) Fujita, K.; Tamura, R.; Tanaka, Y.; Yoshida, M.; Onoda, M.; Yamaguchi, R. Dehydrogenative Oxidation of Alcohols in Aqueous Media Catalyzed by a Water-Soluble Dicationic Iridium Complex Bearing a Functional N-Heterocyclic Carbene Ligand without Using Base. ACS Catal. 2017, 7, 7226–7230; (c) Kawahara, R.; Fujita, K. I.; Yamaguchi, R. Dehydrogenative Oxidation of Alcohols in Aqueous Media Using Water-Soluble and Reusable Cp*lr Catalysts Bearing a Functional Bipyridine Ligand. J. Am. Chem. Soc. 2012, 134, 3643–3646; (d) Zhang, Y.; Lim, C. S.; Sim, D. S. B.; Pan, H. J.; Zhao, Y. Catalytic Enantioselective Amination of Alcohols by the Use of Borrowing Hydrogen Methodology: Cooperative Catalysis by Iridium and a Chiral Phosphoric Acid. Angew. Chem. Int. Ed. 2014, 53, 1399–1403.
- 17 For selected examples, see (a) Muthaiah, S.; Hong, S. H. Acceptorless and base-free dehydrogenation of alcohols and amines using ruthenium-hydride complexes. Adv. Synth. Catal. 2012, 354, 3045–3053; (b) Zhang, J.; Gandelman, M.; Shimon, L. J. W.; Milstein, D. Electron-rich, bulky PNN-type ruthenium complexes: Synthesis, characterization and catalysis of alcohol dehydrogenation. Dalton Trans. 2007, 107–113; (c) Shahane, S.; Fischmeister, C.; Bruneau, C. Acceptorless ruthenium catalyzed dehydrogenation of alcohols to ketones and esters. Catal. Sci. Technol. 2012, 2, 1425–1428; (d) Nielsen, M.; Alberico, E.; Baumann, W.; Drexler, H. J.; Junge, H.; Gladiali, S.; Beller, M. Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide. Nature 2013, 495, 85–89; (e) Dahl, E. W.; Louis-Goff, T.; Szymczak, N. K. Second sphere ligand modifications enable a recyclable catalyst for oxidant-free alcohol oxidation to carboxylates. Chem. Commun. 2017, 53, 2287–2289.
- 18 For selected examples, see (a) Alabau, R. G.; Esteruelas, M. A.; Martinez, A.; Olivan, M.; Onate, E. Base-Free and Acceptorless Dehydrogenation of Alcohols Catalyzed by an Iridium Complex Stabilized by a N,N,N-Osmaligand. Organometallics 2018, 37, 2732–2740; (b) Bertoli, M.; Choualeb, A.; Lough, A. J.; Moore, B.; Spasyuk, D.; Gusev, D. G. Osmium and Ruthenium Catalysts for Dehydrogenation of Alcohols. Organometallics 2011, 30, 3479–3482; (c) Baratta, W.; Bossi, G.; Putignano, E.; Rigo, P. P. Diamine Ru and Os Diphosphane Complexes as Efficient Catalysts for the Dehydrogenation of Alcohols to Ketones. Chem.-Eur. J. 2011, 17, 3474–3481.
- 19For selected examples, see: (a) Chakraborty, S.; Lagaditis, P. O.; Förster, M.; Bielinski, E. A.; Hazari, N.; Holthausen, M. C. Well-defined iron catalysts for the acceptorless reversible dehydrogenation- hydrogenation of alcohols and ketones. ACS Catal. 2014, 4, 3994–4003; (b) Kamitani, M.; Ito, M.; Itazaki, M.; Nakazawa, H. Effective dehydrogenation of 2-pyridylmethanol derivatives catalyzed by an iron complex. Chem. Commun. 2014, 50, 7941–7944; (c) Song, H.; Kang, B.; Hong, S. H. Fe-Catalyzed Acceptorless Dehydrogenation of Secondary Benzylic Alcohols. ACS Catal. 2014, 4, 2889–2895; (d) Rawlings, A. J.; Diorazio, L. J.; Wills, M. Synthesis and Biological Evaluation of a Teixobactin Analogue. Org. Lett. 2015, 17, 1086–1089; (e) Emayavaramban, B.; Sen, M.; Sundararaju, B. Iron-Catalyzed Sustainable Synthesis of Pyrrole. Org. Lett. 2017, 19, 6–9.
- 20For selected examples, see: (a) Zhang, G.; Scott, B. L.; Hanson, S. K. Mild and Homogeneous Cobalt-Catalyzed Hydrogenation of C=C, C=O, and C=N Bonds. Angew. Chem. Int. Ed. 2012, 51, 12102–12106; (b) Daw, P.; Ben-David, Y.; Milstein, D. Direct Synthesis of Benzimidazoles by Dehydrogenative Coupling of Aromatic Diamines and Alcohols Catalyzed by Cobalt. ACS Catal. 2017, 7, 7456–7460; (c) Gang, M. K.; Pardeep, D., Balakumar, E., Basker, S. Cp*Co(III)-catalyzed efficient dehydrogenation of secondary alcohols. Chem.-Asian J. 2018, 13, 2445–2448; (d) Midya, S. P.; Landge, V. G.; Sahoo, M. K.; Rana, J.; Balaraman, E. Cobalt-catalyzed acceptorless dehydrogenative coupling of aminoalcohols with alcohols: direct access to pyrrole, pyridine and pyrazine derivatives. Chem. Commun. 2018, 54, 90–93.
- 21 Nielsen, M.; Kammer, A.; Cozzula, D.; Junge, H.;Gladiali, S. Efficient Hydrogen Production from Alcohols under Mild Reaction Conditions. Angew. Chem. Int. Ed. 2011, 50, 9593–9597.
- 22 Tseng, K. N. T.; Kampf, J. W.; Szymczk, N. K. Base-Free, Acceptorless, and Chemoselective Alcohol Dehydrogenation Catalyzed by an Amide-Derived NNN-Ruthenium(II) Hydride Complex. Organometallics 2013, 32, 2046–2049.
- 23 Chang, W.; Gong, X.; Wang, S.; Xiao, L. P.; Song, G. Acceptorless dehydrogenation and dehydrogenative coupling of alcohols catalysed by protic NHC ruthenium complexes. Org. Biomol. Chem. 2017, 15, 3466–3471.
- 24 Faßbach, T. A.; Sommer, F. O.; Behr, A.; Romanski, S.; Leinweber, D.; Vorholt, A. J. Non-ionic surfactants from renewables-amphiphilic ligands in biphasic reactions. Catal. Sci. Technol. 2017, 7, 1650–1653.
- 25 Hao, Z.; Yan, X.; Liu, K.; Yue, X.; Han, Z.; Lin, J. Ruthenium carbonyl complexes with pyridine-alkoxide ligands: synthesis, characterization and catalytic application in dehydrogenative oxidation of alcohols. New J. Chem. 2018, 42, 15472–15478.
- 26(a) Li, S. H.; Chen, F. R.; Zhou, Y. F.; Wang, J. N.; Zhang, H.; Xu, J. G. Enhanced fluorescence sensing of hydroxylated organotins by a boronic acid-linked Schiff base. Chem. Commun. 2009, 4179–4181; (b) Lee, S. A.; You, G. R.; Choi, Y. W.; Jo, H. Y.; Kim, A. R.; Noh, I.; Kim, S. J.; Kim, Y.; Kim, C. A new multifunctional Schiff base as a fluorescence sensor for Al3+ and a colorimetric sensor for CN− in aqueous media: an application to bioimaging. Dalton Trans. 2014, 43, 6650–6659.
- 27(a) Liu, X.; Manzur, C.; Novoa, N.; Celedón, S.; Carrillo, D.; Hamon, J. R. Multidentate unsymmetrically-substituted Schiff bases and their metal complexes: Synthesis, functional materials properties, and applications to catalysis. Coord. Chem. Rev. 2018, 357, 144–172; (b) Shaw, S.; White, J. D. Asymmetric Catalysis Using Chiral Salen-Metal Complexes: Recent Advances. Chem. Rev. 2019, 119, 9381–9426; (c) Redshaw, C.; Tang, Y. Tridentate ligands and beyond in group IV metal a-olefin homo-/co-polymerization catalysis. Chem. Soc. Rev. 2012, 41, 4484–4510.
- 28(a) Hajrezaie, M.; Paydar, M.; Looi, C. Y.; Moghadamtousi, S. Z.; Hassandarvish, P.; Salga, M. S.; Karimian, H.; Shams, K.; Zahedifard, M.; Majid, N. A.; Ali, H. M.; Abdulla, M. A. Apoptotic effect of novel Schiff Based CdCl2(C14H21N3O2) complex is mediated via activation of the mitochondrial pathway in colon cancer cells. Sci. Rep. 2015, 5, 9097; (b) Mukherjee, T.; Pessoa, J. C.; Kumar, A.; Sarkar, A. R. Synthesis, structure, magnetic properties and biological activity of supramolecular copper(II) and nickel(II) complexes with a Schiff base ligand derived from vitamin B6. Dalton Trans. 2013, 42, 2594–2607.
- 29(a) Kumar, R.; Mahiya, K.; Mathur, P. Dimeric copper(II) complex of a new Schiff base ligand Effect of morphology on the catalytic oxidation of aromatic alcohol. Dalton Trans. 2013, 42, 8553–8557; (b) Shirase, S.; Shinohara, K.; Tsurugi, H.; Mashima, K. Oxidation of Alcohols to Carbonyl Compounds Catalyzed by Oxo-Bridged Dinuclear Cerium Complexes with Pentadentate Schiff-Base Ligands under a Dioxygen Atmosphere. ACS Catal. 2018, 8, 6939–6947.
- 30(a) Tamizh, M. M.; Mereiter, K.; Kirchner, K.; Karvembu, R. Ruthenium(II) carbonyl complexes containing ‘pincer like’ ONS donor Schiff base and triphenylphosphine as catalyst for selective oxidation of alcohols at room temperature. J. Organomet. Chem. 2012, 700, 194–201; (b) Sasabe, H.; Nakanishi, S.; Takata, T. Diastereotopic relationship between planar and central chiralities in the formation of Ru(η3-allyl)(CO)(PPh3)(L–L’) complexes. Inorg. Chem. Commun. 2003, 6, 1140–1143.
- 31 Wang, Q.; Chai, H.; Yu, Z. Acceptorless Dehydrogenation of N-Heterocycles and Secondary Alcohols by Ru(II)-NNC Complexes Bearing a Pyrazoyl-indolylpyridine Ligand. Organometallics 2018, 37, 584–591.
- 32 Liu, K.; Zhang, J.; Huo, S.; Dong, Q.; Hao, Z.; Han, Z.; Lu, G. L.; Lin, J. Highly efficient oxidation of alcohols catalyzed by Ru(II) carbonyl complexes bearing salicylaldiminato ligands. Inorg. Chim. Acta 2020, 500, 119224.
- 33 Kasumov, V. T.; Köksal, F.; Köseoğlu, R. Synthesis, spectroscopy and redox chemistry of bis(n-aryl-3,5-di-tert-butylsalicylaldiminato)- copper(II) complexes. J. Coord. Chem. 2004, 57, 591–603.
- 34 Joseph, T.; Deshpande, S.; Halligudi, S.; Vinu, A.; Ernst, S.; Hartmann, M. Hydrogenation of olefins over hydrido chlorocarbonyl tris-(triphenylphosphine) ruthenium(II) complex immobilized on functionalized MCM-41 and SBA-15. J. Mol. Catal. A-Chem. 2003, 206, 13–21.
- 35 Ganguli, K.; Shee, S.; Panja, D.; Kundu, S. Cooperative Mn(I)-complex catalyzed transfer hydrogenation of ketones and imines. Dalton Trans. 2019, 48, 7358–7366.
- 36 Shahane, S.; Fischmeister, C.; Bruneau, C. Acceptorless ruthenium catalyzed dehydrogenation of alcohols to ketones and esters. Catal. Sci. Technol. 2012, 2, 1425–1428.
- 37 Du, W.; Wang, L.; Wu, P.; Yu, Z. A Versatile Ruthenium(II)-NNC Complex Catalyst for Transfer Hydrogenation of Ketones and Oppenauer- Type Oxidation of Alcohols. Chem.-Eur. J. 2012, 18, 11550–11554.
- 38 Tseng, K. N. T.; Kampf, J. W.; Szymczak, N. K. Mechanism of N,N,N-Amide Ruthenium (II) Hydride Mediated Acceptorless Alcohol Dehydrogenation: Inner-Sphere β-H Elimination versus Outer-Sphere Bifunctional Metal-Ligand Cooperativity. ACS Catal. 2015, 5, 5468–5485.