Implications of Nitrogen Doping on Geometrical and Electronic Structure of the Fullerene Dimers
Yin Su
State Key Lab for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005 China
Search for more papers by this authorZuo-Chang Chen
State Key Lab for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005 China
Search for more papers by this authorHan-Rui Tian
State Key Lab for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005 China
Search for more papers by this authorYun-Yan Xu
State Key Lab for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005 China
Search for more papers by this authorCorresponding Author
Qianyan Zhang
State Key Lab for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005 China
E-mail: [email protected]Search for more papers by this authorSu-Yuan Xie
State Key Lab for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005 China
Search for more papers by this authorLan-Sun Zheng
State Key Lab for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005 China
Search for more papers by this authorYin Su
State Key Lab for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005 China
Search for more papers by this authorZuo-Chang Chen
State Key Lab for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005 China
Search for more papers by this authorHan-Rui Tian
State Key Lab for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005 China
Search for more papers by this authorYun-Yan Xu
State Key Lab for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005 China
Search for more papers by this authorCorresponding Author
Qianyan Zhang
State Key Lab for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005 China
E-mail: [email protected]Search for more papers by this authorSu-Yuan Xie
State Key Lab for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005 China
Search for more papers by this authorLan-Sun Zheng
State Key Lab for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005 China
Search for more papers by this authorThese authors contributed equally.
Main observation and conclusion
Because of its unsaturated bonds, C60 is susceptible to polymerize into dimers. The implications of nitrogen doping on the geometrical and electronic structure of C60 dimers have been ambiguous for years. A quarter-century after the discovery of azafullerene dimer (C59N)2, we reported its single crystallographic structure in 2019. Herein, the unambiguous crystal structure information of (C59N)2 is elucidated specifically, revealing that the inter-cage C—C single bond length of (C59N)2 is comparable with that of an ordinary C(sp3)-C(sp3) single bond, and that the most stable conformer of (C59N)2 is gauche-conformer with a dihedral angle of 66°. To amend the structural deviations, geometrical structure of (C59N)2 is optimized by a B3LYP-D3BJ function, which is proved to be more consistent with its single crystal structure than those by the commonly used B3LYP function. Moreover, the calculation method is also suitable for other representative fullerene dimers, such as (C60)2 and its divalent anion. Additionally, the dissociation of (C59N)2 at 473 K under mass spectrometric conditions suggests the inter-cage C—C bond is relatively weaker than an ordinary C—C single bond, which can be explained by the interaction energies of inter-cages.
Supporting Information
Filename | Description |
---|---|
cjoc202000345-sup-0001-Supinfo.pdfPDF document, 1.3 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smally, R. E. C60 Buckminsterfullerene. Nature 1985, 318, 162–163.
- 2 Kumashiro, R.; Tanigaki, K.; Ohashi, H.; Tagmatarchis, N.; Kato, H.; Shinohara, H.; Akasaka, T.; Kato, K.; Aoyagi, S.; Kimura, S.; Takata, M. Azafullerene (C59N)2 Thin-Film Field-Effect Transistors. Appl. Phys. Lett. 2004, 84, 2154–2156.
- 3 Rio, J.; Beeck, S.; Rotas, G.; Ahles, S.; Jacquemin, D.; Tagmatarchis, N.; Ewels, C.; Wegner, H. A. Ele ctronic Communication Between Two [10]Cycloparaphenylenes and Bis(azafullerene) (C59N)2 Induced by Cooperative Complexation. Angew. Chem. Int. Ed. 2018, 57, 6930–6934.
- 4 Stergiou, A.; Rio, J.; Griwatz, J. H.; Arčon, D.; Wegner, H. A.; Ewels, C. P.; Tagmatarchis, N. A Long-Lived Azafullerenyl Radical Stabilized by Supramolecular Shielding with a [10]Cycloparaphenylene. Angew. Chem. Int. Ed. 2019, 58, 17745–17750.
- 5 Yeretzian, C.; Hansen, K.; Diederich, F.; Whetten, R. L. Coalescence Reactions of Fullerenes. Nature 1992, 359, 44–47.
- 6 Oszlányi, G.; Bortel, G.; Faigel, G.; Tegze, M.; Gránásy, L.; Pekker, S.; Stephens, P. W.; Bendele, G.; Dinnebier, R.; Mihály, G.; Jánossy, A.; Chauvet, O.; Forró, L. Dimerization in KC60 and RbC60. Phys. Rev. B: Condens. Matter. 1995, 51, 12228–12232.
- 7 Oszlányi, G.; Bortel, G.; Faigel, G.; Gránásy, L. Single C-C Bond in (C60)22-. Phys. Rev. B 1996, 54, 11849–11852.
- 8 Wang, G.-W.; Komatsu, K.; Murata, Y.; Shiro, M. Synthesis and X-ray Structure of Dumb-Bell-Shaped C120. Nature 1997, 387, 583–586.
- 9 Konarev, D. V.; Khasanov, S. S.; Otsuka, A.; Saito, G. The Reversible Formation of a Single-Bonded (C60-)2 Dimer in Ionic Charge Transfer Complex: Cp*2Cr·C60(C6H4Cl2)2. The Molecular Structure of (C60-)2. J. Am. Chem. Soc. 2002, 124, 8520–8521.
- 10 Smith, A. B.; Tokuyama, H.; Strongin, R. M.; Furst, G. T.; Romanow, W. J. Synthesis of Oxo- and Methylene-Bridged C60 Dimers, the First Well-Characterized Species Containing Fullerene-Fullerene Bonds. J. Am. Chem. Soc. 1995, 117, 9359–9360.
- 11 Lebedkin, S.; Ballenweg, S.; Gross, J.; Taylor, R.; KrAtschmer, W. Synthesis of C120O: A New Dimeric [60]Fullerene Derivative. Tetrahedron Lett. 1995, 36, 4971–4974.
- 12 Gromov, A.; Lebedkin, S.; Ballenweg, S.; Avent, A. G.; Taylor, R.; Kratschmer, W. C120O2: The First [60]Fullerene Dimer with Cages Bis-linked by Furanoid Bridges. Chem. Commun. 1997, 209–210.
- 13 Giesa, S.; Gross, J. H.; Hull, W. E.; Lebedkin, S.; Gromov, A.; Gleiter, R.; Krätschmer, W. C120OS the First Sulfur-Containing Dimeric [60]Fullerene Derivative. Chem. Commun. 1999, 465–466.
- 14 Gromov, A.; Ballenweg, S.; Giesa, S.; Lebedkin, S.; Hull, W. E.; Krätschmer, W. Preparation and Characterisation of C119. Chem. Phys. Lett. 1997, 267, 460–466.
- 15 Dragoe, N.; Tanibayashi, S.; Nakahara, K.; Nakao, S.; Shimotani, H.; Xiao, L.; Kitazawa, K.; Dragoe, N.; Kitazawa, K.; Achiba, Y.; Kikuchi, K.; Nojima, K. Carbon Allotropes of Dumbbell Structure: C121 and C122. Chem. Commun. 1999, 85–86.
- 16 Komatsu, K.; Fujiwara, K.; Murata, Y. The Fullerene Cross-Dimer C130: Synthesis and Properties. Chem. Commun. 2000, 1583–1584.
- 17 Zhao, Y. L.; Chen, Z. L.; Yuan, H.; Gao, X. F.; Qu, L.; Chai, Z. F.; Xing, G. M.; Yoshimoto, S.; Tsutsumi, E.; Itaya, K. Highly Selective and Simple Synthesis of C2m−X−C2n Fullerene Dimers. J. Am. Chem. Soc. 2004, 126, 11134–11135.
- 18 Lebedkin, S.; Hull, W. E.; Soldatov, A.; Renker, B.; Kappes, M. M. Structure and Properties of the Fullerene Dimer C140 Produced by Pressure Treatment of C70. J. Phys. Chem. B 2000, 104, 4101–4110.
- 19 Chen, Z. L.; Zhao, Y. L.; Qu, L.; Gao, X. F.; Zhang, J.; Yuan, H.; Chai, Z. F.; Xing, G. M.; Cheng, Y. Synthesis of New Carbon Nanomolecule: C141. Chin. Sci. Bull. 2004, 49, 793–796.
- 20 Wang, G.-W.; Wang, C.-Z.; Zhu, S.-E.; Murata, Y. Manganese(iii) Acetate-Mediated Radical Reaction of [60]Fullerene with Phosphonate Esters Affording Unprecedented Separable Singly-bonded [60]Fullerene Dimers. Chem. Commun. 2011, 47, 6111–6113.
- 21 Lu, S. R.; Jin, T. N.; Bao, M.; Yamamoto, Y. NaOH-Catalyzed Dimerization of Monofunctionalized Hydrofullerenes: Transition-Metal-Free, General, and Efficient Synthesis of Single-Bonded [60]Fullerene Dimers. Org. Lett. 2012, 14, 3466–3469.
- 22 Lu, S. R.; Jin, T. N.; Kwon, E. S.; Bao, M.; Yamamoto, Y. Highly Efficient Cu(OAc)2-Catalyzed Dimerization of Monofunctionalized Hydrofullerenes Leading to Single-Bonded [60]Fullerene Dimers. Angew. Chem. Int. Ed. 2012, 51, 802–806.
- 23 Schick, G.; Kampe, K.-D.; Hirsch, A. Reaction of [60]Fullerene with Morpholine and Piperidine: Preferred 1,4-additions and Fullerene Dimer Formation. J. Chem. Soc., Chem. Commun. 1995, 2023–2024.
- 24 Zhang, T.-H.; Lu, P.; Wang, F.; Wang, G.-W. Reaction of [60]Fullerene with Free Radicals Generated from Active Methylene Compounds by Manganese(iii) Acetate Dihydrate. Org. Biomol. Chem. 2003, 1, 4403–4407.
- 25 Hummelen, J. C.; Knight, B.; Pavlovich, J.; González, R.; Wudl, F. Isolation of the Heterofullerene C59N as Its Dimer (C59N)2. Science 1995, 269, 1554–1556.
- 26 Strout, D. L.; Murry, R. L.; Xu, C.; Eckhoff, W. C.; Odom, G. K.; Scuseria, G. E. A Theoretical Study of Buckminsterfullerene Reaction Products: C60+C60. Chem. Phys. Lett. 1993, 214, 576–582.
- 27 Matsuzawa, N.; Ata, M. Dimerization of C60: The Formation of Dumbbell-Shaped C120. J. Phys. Chem. 1994, 98, 2555–2563.
- 28 Kurti, J.; Nemeth, K. Structure and Energetics of Neutral and Negatively Charged C60 Dimers. Chem. Phys. Lett. 1996, 256, 119–125.
- 29 Scuseria, G. E. What is the Lowest-Energy Isomer of the C60 Dimer? Chem. Phys. Lett. 1996, 257, 583–586.
- 30 Osawa, S.; Sakai, M.; Osawa, E. Nature of Cyclobutane Bonds in the Neutral [2+2] Dimer of C60. J. Phys. Chem. A 1997, 101, 1378–1383.
- 31 Schulte, K.; Wang, L.; Moriarty, P. J.; Prassides, K.; Tagmatarchis, N. Resonant Processes and Coulomb Interactions in (C59N)2. J. Chem. Phys. 2007, 126, 184707.
- 32
Schulte, K.; Wang, L.; Prassides, K.; Tagmatarchis, N.; Moriarty, P. J. C 1s Photoemission and Shake-Up Features of (C59N)2. J. Phys.: Conf. Ser. 2008, 100, 072024.
10.1088/1742-6596/100/7/072024 Google Scholar
- 33 Xie, S.-Y.; Yang, S. F.; Li, S.-H., Fullerenes: Fundamental and Application, China Science Publishing & Media, Ltd., Beijing, 2019, p. 58.
- 34 Andreon, W.; Curioni, A.; Holczer, K.; Prassides, K.; Keshavarz-K, M.; Hummelen, J.-C.; Wudl, F. Unconventional Bonding of Azafullerenes: Theory and Experiment. J. Am. Chem. Soc. 1996, 118, 11335–11336.
- 35 Pichler, T.; Knupfer, M.; Golden, M. S.; Haffner, S.; Friedlein, R.; Fink, J. On-Ball Doping of Fullerenes: The Electronic Structure of C59N Dimers from Experiment and Theory. Phys. Rev. Lett. 1997, 78, 4249–4252.
- 36 Lee, K. H.; Park, S. S.; Suh, Y.; Yamabe, T.; Osawa, E.; Lu, H. P.; Gutta, P.; Lee, C. Similarities and Differences between (C60)22- and (C59N)2 Conformers. J. Am. Chem. Soc. 2001, 123, 11085–11086.
- 37 Lu, B.-W. Synthesis of Aza[60]Fullerene and Higher Fullerene Acceptors. M.D. Dissertation, Xiamen University, Xiamen, 2015 (in Chinese).
- 38 Xu, Y.-Y.; Tian, H.-R.; Li, S.-H.; Chen, Z.-C.; Yao, Y.-R.; Wang, S.-S.; Zhang, X.; Zhu, Z.-Z.; Deng, S.-L.; Zhang, Q. Y.; Yang, S. F.; Xie, S.-Y.; Huang, R.-B.; Zheng, L.-S. Flexible Decapyrrylcorannulene Hosts. Nat. Commun. 2019, 10, 485.
- 39 Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32, 1456–1465.
- 40 Tan, T.; Yang, J.-H.; Zhu, C.-H.; Wang, G.-W.; Chen, J.-F.; Su, J.-H. A Weak Intercage C―C Bond in a [C60]Fullerene Dimer Studied by In situ Variable Temperature EPR Spectroscopy. Acta Phys.-Chim. Sin. 2016, 32, 1929–1932.
- 41 Chen, M.-M.; Su, H.-F.; Xie, Y.; He, L.-F.; Lin, S.-C.; Zhang, M.-L.; Wang, C.; Xie, S.-Y.; Huang, R.-B.; Zheng, L.-S. Sniffing with Mass Spectrometry. Sci. Bull. 2018, 63, 1351–1357.
- 42 Meletov, K. P.; Arvanitidis, J.; Christofilos, D.; Kourouklis, G. A.; Davydov, V. A. Raman Study of the Temperature-Induced Decomposition of the Fullerene Dimers C120. Chem. Phys. Lett. 2016, 654, 81–85.