Electrochemically Enabled Intramolecular Aminooxygenation of Alkynes via Amidyl Radical Cyclization
Zhong-Wei Hou
State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005 China
Search for more papers by this authorCorresponding Author
Hai-Chao Xu
State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005 China
E-mail: [email protected]Search for more papers by this authorZhong-Wei Hou
State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005 China
Search for more papers by this authorCorresponding Author
Hai-Chao Xu
State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005 China
E-mail: [email protected]Search for more papers by this authorSummary of main observation and conclusion
An electrochemical synthesis of oxazol-2-ones and imidazol-2-ones has been developed via 5-exo-dig cyclization of propargylic carbamates- and ureas-derived amidyl radicals. The electrosynthesis relies on the dual function of 2,2,6,6-tetramethylpiperidin- 1-yl)oxyl (TEMPO) as a redox mediator for amidyl radical formation and an oxygen atom donor. The reactions are conducted under mild conditions using a simple setup and provide convenient access to functionalized oxazol-2-ones and imidazol-2-ones from readily available materials.
Supporting Information
Filename | Description |
---|---|
cjoc201900500-sup-0001-SupInfo.pdfPDF document, 11.3 MB | Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1(a) Zard, S. Z. Recent Progress in the Generation and Use of Nitrogen- Centred Radicals. Chem. Soc. Rev. 2008, 37, 1603−1618; (b) Xiong, T.; Zhang, Q. New Amination Strategies Based on Nitrogen-Centered Radical Chemistry. Chem. Soc. Rev. 2016, 45, 3069−3087; (c) Chen, J. R.; Hu, X. Q.; Lu, L. Q.; Xiao, W. J. Visible Light Photoredox-Controlled Reactions of N-Radicals and Radical Ions. Chem. Soc. Rev. 2016, 45, 2044−2056; (d) Jiang, H.; Studer, A. Chemistry with N-Centered Radicals Generated by Single-Electron Transfer-Oxidation Using Photoredox Catalysis. CCS Chem. 2019, 1, 38−49; (e) Kärkäs, M. D. Photochemical Generation of Nitrogen-Centered Amidyl, Hydrazonyl, and Imidyl Radicals: Methodology Developments and Catalytic Applications. ACS Catal. 2017, 7, 4999−5022; (f) Zhao, Y.; Xia, W. Recent Advances in Radical-based C–N Bond Formation via Photo-/Electrochemistry. Chem. Soc. Rev. 2018, 47, 2591−2608.
- 2(a) Fuentes, N.; Kong, W.; Fernandez-Sanchez, L.; Merino, E.; Nevado, C. Cyclization Cascades via N-Amidyl Radicals toward Highly Functionalized Heterocyclic Scaffolds. J. Am. Chem. Soc. 2015, 137, 964–973; (b) Reina, D. F.; Dauncey, E. M.; Morcillo, S. P.; Svejstrup, T. D.; Popescu, M. V.; Douglas, J. J.; Sheikh, N. S.; Leonori, D. Visible-Light- Mediated 5-exo-dig Cyclizations of Amidyl Radicals. Eur. J. Org. Chem. 2017, 2108–2111; (c) Peng, X.-X.; Wei, D.; Han, W.-J.; Chen, F.; Yu, W.; Han, B. Dioxygen Activation via Cu-Catalyzed Cascade Radical Reaction: An Approach to Isoxazoline/Cyclic Nitrone-Featured α-Ketols. ACS Catal. 2017, 7, 7830–7834; (d) Cai, Y.; Jalan, A.; Kubosumi, A. R.; Castle, S. L. Microwave-Promoted Tin-Free Iminyl Radical Cyclization with TEMPO Trapping: A Practical Synthesis of 2-Acylpyrroles. Org. Lett. 2015, 17, 488–491; (e) Qian, X.-Y.; Xiong, P.; Xu, H.-C. Modular Synthesis of Functionalized 4-Quinolones via a Radical Cyclization Cascade. Acta Chim. Sinica 2019, 77, 879–883.
- 3(a) Yan, M.; Kawamata, Y.; Baran, P. S. Synthetic Organic Electrochemical Methods Since 2000: On the Verge of a Renaissance. Chem. Rev. 2017, 117, 13230–13319; (b) Jiang, Y.; Xu, K.; Zeng, C. Use of Electrochemistry in the Synthesis of Heterocyclic Structures. Chem. Rev. 2018, 118, 4485–4540; (c) Moeller, K. D. Using Physical Organic Chemistry to Shape the Course of Electrochemical Reactions. Chem. Rev. 2018, 118, 4817–4833; (d) Yoshida, J.; Kataoka, K.; Horcajada, R.; Nagaki, A. Modern Strategies in Electroorganic Synthesis. Chem. Rev. 2008, 108, 2265–2299; (e) Francke, R.; Little, R. D. Redox Catalysis in Organic Electrosynthesis: Basic Principles and Recent Developments. Chem. Soc. Rev. 2014, 43, 2492–2521; (f) Yang, Q.-L.; Fang, P.; Mei, T.-S. Recent Advances in Organic Electrochemical C–H Functionalization. Chin. J. Chem. 2018, 36, 338–352; (g) Ye, Z.; Zhang, F. Recent Advances in Constructing Nitrogen-Containing Heterocycles via Electrochemical Dehydrogenation. Chin. J. Chem. 2019, 37, 513–528; (h) Yuan, Y.; Lei, A. Electrochemical Oxidative Cross-Coupling with Hydrogen Evolution Reactions. Acc. Chem. Res. 2019, 52, 3309–3324; (i) Waldvogel, S. R.; Lips, S.; Selt, M.; Riehl, B.; Kampf, C. J. Electrochemical Arylation Reaction. Chem. Rev. 2018, 118, 6706–6765; (j) Sauer, G. S.; Lin, S. An Electrocatalytic Approach to the Radical Difunctionalization of Alkenes. ACS Catal. 2018, 8, 5175–5187; (k) Nutting, J. E.; Rafiee, M.; Stahl, S. S. Tetramethylpiperidine N-Oxyl (TEMPO), Phthalimide N-Oxyl (PINO), and Related N-Oxyl Species: Electrochemical Properties and Their Use in Electrocatalytic Reactions. Chem. Rev. 2018, 118, 4834–4885; (l) Mei, H.; Yin, Z.; Liu, J.; Sun, H.; Han, J. Recent Advances on the Electrochemical Difunctionalization of Alkenes/Alkynes. Chin. J. Chem. 2019, 37, 292–301.
- 4 Xiong, P.; Xu, H. C. Chemistry with Electrochemically Generated N-Centered Radicals. Acc. Chem. Res. 2019, 52, 3339–3350.
- 5(a) Zhao, H.-B.; Hou, Z.-W.; Liu, Z.-J.; Zhou, Z.-F.; Song, J.; Xu, H.-C. Amidinyl Radical Formation through Anodic N-H Bond Cleavage and Its Application in Aromatic C-H Bond Functionalization. Angew. Chem. Int. Ed. 2017, 56, 587−590; (b) Zhao, H.-B.; Liu, Z.-J.; Song, J.; Xu, H.-C. Reagent-Free C-H/N-H Cross-Coupling: Regioselective Synthesis of N-Heteroaromatics from Biaryl Aldehydes and NH3. Angew. Chem. Int. Ed. 2017, 56, 12732–12735; (c) Huang, C.; Qian, X.-Y.; Xu, H.-C. Continuous-Flow Electrosynthesis of Benzofused S-Heterocycles by Dehydrogenative C−S Cross-Coupling. Angew. Chem. Int. Ed. 2019, 58, 6650–6653.
- 6(a) Zhu, L.; Xiong, P.; Mao, Z.-Y.; Wang, Y. H.; Yan, X.; Lu, X.; Xu, H.-C. Electrocatalytic Generation of Amidyl Radicals for Olefin Hydroamidation: Use of Solvent Effects to Enable Anilide Oxidation. Angew. Chem. Int. Ed. 2016, 55, 2226−2229; (b) Long, H.; Song, J.; Xu, H.-C. Electrochemical Synthesis of 7-Membered Carbocycles through Cascade 5-exo-trig/7-endo-trig Radical Cyclization. Org. Chem. Front. 2018, 5, 3129−3132; (c) Hou, Z.-W.; Yan, H.; Song, J.-S.; Xu, H.-C. Electrochemical Synthesis of (Aza)indolines via Dehydrogenative [3+2] Annulation: Application to Total Synthesis of (±)-Hinckdentine A. Chin. J. Chem. 2018, 36, 909−915; (d) Xiong, P.; Xu, H.-H.; Xu, H.-C. Metal- and Reagent-Free Intramolecular Oxidative Amination of Tri- and Tetrasubstituted Alkenes. J. Am. Chem. Soc. 2017, 139, 2956− 2959.
- 7These reactions proceed through amidyl radical cyclization followed by intramolecular trapping of the resulting vinyl radical: (a) Hou, Z.-W.; Mao, Z.-Y.; Zhao, H.-B.; Melcamu, Y. Y.; Lu, X.; Song, J.; Xu, H.-C. Electrochemical C-H/N-H Functionalization for the Synthesis of Highly Functionalized (Aza)indoles. Angew. Chem. Int. Ed. 2016, 55, 9168− 9172; (b) Hou, Z.-W.; Mao, Z.-Y.; Song, J.; Xu, H.-C. Electrochemical Synthesis of Polycyclic N-Heteroaromatics through Cascade Radical Cyclization of Diynes. ACS Catal. 2017, 7, 5810−5813; (c) Hou, Z.-W.; Mao, Z.-Y.; Melcamu, Y. Y.; Lu, X.; Xu, H.-C. Electrochemical Synthesis of Imidazo-Fused N-Heteroaromatic Compounds through a C-N Bond-Forming Radical Cascade. Angew. Chem. Int. Ed. 2018, 57, 1636−1639; (d) Yan, H.; Mao, Z. Y.; Hou, Z. W.; Song, J. H.; Xu, H. C. A Diastereoselective Approach to Axially Chiral Biaryls via Electrochemically Enabled Cyclization Cascade. Beilstein J. Org. Chem. 2019, 15, 795−800; (e) Xu, F.; Long, H.; Song, J.; Xu, H.-C. De Novo Synthesis of Highly Functionalized Benzimidazolones and Benzoxazolones through an Electrochemical Dehydrogenative Cyclization Cascade. Angew. Chem. Int. Ed. 2019, 58, 9017−9021.
- 8 Xu, F.; Zhu, L.; Zhu, S.; Yan, X.; Xu, H.-C. Electrochemical Intramolecular Aminooxygenation of Unactivated Alkenes. Chem.-Eur. J. 2014, 20, 12740−12744.
- 9(a) Nomura, I.; Mukai, C. Studies on the Total Synthesis of Streptazolin and Its Related Natural Products: First Total Synthesis of (±)-8α-Hydroxystreptazolone. J. Org. Chem. 2004, 69, 1803−1812;
(b) Fearnley, S. P.; Thongsornkleeb, C. Oxazolone Cycloadducts as Heterocyclic Scaffolds for Alkaloid Construction: Synthesis of (±)-2-epi- Pumiliotoxin C. J. Org. Chem. 2010, 75, 933−936;
(c) Li, W.; Wollenburg, M.; Glorius, F. Enantioselective Synthesis of 2-Oxazolidinones by Ruthenium(II)–NHC-Catalysed Asymmetric Hydrogenation of 2-Oxazolones. Chem. Sci. 2018, 9, 6260−6263;
(d) Casnati, A.; Perrone, A.; Mazzeo, P. P.; Bacchi, A.; Mancuso, R.; Gabriele, B.; Maggi, R.; Maestri, G.; Motti, E.; Stirling, A.; Ca, N. D. Synthesis of Imidazolidin- 2-ones and Imidazol-2-ones via Base-Catalyzed Intramolecular Hydroamidation of Propargylic Ureas under Ambient Conditions. J. Org. Chem. 2019, 84, 3477−3490;
(e) Xue, N.; Yang, X.; Wu, R.; Chen, J.; He, Q.; Yang, B.; Lu, X.; Hu, Y. Synthesis and Biological Evaluation of Imidazol-2-one Derivatives as Potential Antitumor Agents. Bioorg. Med. Chem. 2008, 16, 2550−2557;
(f) Dage, R. C.; Roebel, L. E.; Gibson, J. P.; Okerholm, R. A.; Rolf, C. N. Enoximone. Cardiovasc. Drug Rev. 1986, 4, 63−79.
10.1111/j.1527-3466.1986.tb00488.x Google Scholar
- 10 Herrero, M. T.; de Sarralde, J. D.; SanMartin, R.; Bravo, L.; Dominguez, E. Cesium Carbonate-Promoted Hydroamidation of Alkynes: Enamides, Indoles and the Effect of Iron(III) Chloride. Adv. Synth. Catal. 2012, 354, 3054–3064.
- 11(a) Qian, X.-Y.; Li, S.-Q.; Song, J.; Xu, H.-C. TEMPO-Catalyzed Electrochemical C–H Thiolation: Synthesis of Benzothiazoles and Thiazolopyridines from Thioamides. ACS Catal. 2017, 7, 2730−2734; (b) Zhao, H.-B.; Xu, P.; Song, J.; Xu, H.-C. Cathode Material Determines Product Selectivity for Electrochemical C-H Functionalization of Biaryl Ketoximes. Angew. Chem. Int. Ed. 2018, 57, 15153−15156.
- 12 Romero-Ibañez, J.; Cruz-Gregorio, S.; Quintero, L.; Sartillo-Piscil, F. Concise and Environmentally Friendly Asymmetric Total Synthesis of the Putative Structure of a Biologically Active 3-Hydroxy-2-piperidone Alkaloid. Synthesis 2018, 50, 2878−2886.
- 13(a) Yuan, Y. An Electrochemical Synthesis Approach for Tetrasubstituted Olefins. Chin. J. Chem. 2019, 37, 744–745; (b) Lu, F.; Yang, Z.; Wang, T.; Wang, T.; Zhang, Y.; Yuan, Y.; Lei, A. Electrochemical Oxidative Csp3—H/S—H Cross-Coupling with Hydrogen Evolution for Synthesis of Tetrasubstituted Olefins. Chin. J. Chem. 2019, 37, 547–551; (c) Liu, S.; Li, J.; Wang, D.; Liu, F.; Liu, X.; Gao, Y.; Jie, D.; Cheng, X. An Electrochemical Cinnamyl C—H Amination Reaction Using Carbonyl Sulfamate. Chin. J. Chem. 2019, 37, 570–574.