Critical Role of Molecular Electrostatic Potential on Charge Generation in Organic Solar Cells
Huifeng Yao
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorDeping Qian
Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, 58183 Sweden
Search for more papers by this authorHao Zhang
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorYunpeng Qin
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorBowei Xu
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorYong Cui
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorRunnan Yu
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Feng Gao
Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, 58183 Sweden
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Jianhui Hou
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
E-mail: [email protected]; [email protected]Search for more papers by this authorHuifeng Yao
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorDeping Qian
Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, 58183 Sweden
Search for more papers by this authorHao Zhang
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorYunpeng Qin
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorBowei Xu
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorYong Cui
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorRunnan Yu
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Feng Gao
Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, 58183 Sweden
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Jianhui Hou
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
E-mail: [email protected]; [email protected]Search for more papers by this authorAbstract
Revealing the charge generation is a crucial step to understand the organic photovoltaics. Recent development in non-fullerene organic solar cells (OSCs) indicates efficient charge separation even with negligible energetic offset between the donor and acceptor materials. These new findings trigger a critical question concerning the charge separation mechanism in OSCs, traditionally believed to result from sufficient energetic offset between the polymer donor and fullerene acceptor. We propose a new mechanism, which involves the molecular electrostatic potential, to explain efficient charge separation in non-fullerene OSCs. Together with the new mechanism, we demonstrate a record efficiency of ~12% for systems with negligible energetic offset between donor and acceptor materials. Our analysis also rationalizes different requirement of the energetic offset between fullerene-based and non-fullerene OSCs, and paves the way for further design of OSC materials with both high photocurrent and high photovoltage at the same time.
Supporting Information
Filename | Description |
---|---|
cjoc201800015-sup-0001-SupInfo.pdfPDF document, 4.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Li, G.; Zhu, R.; Yang, Y. Nat. Photonics 2012, 6, 153.
- 2Menke, S. M.; Ran, N. A.; Bazan, G. C.; Friend, R. H. Joule 2018, 2, 25.
- 3Scholes, G. D.; Rumbles, G. Nat. Mater. 2006, 5, 683.
- 4Vandewal, K.; Tvingstedt, K.; Gadisa, A.; Inganas, O.; Manca, J. V. Nat. Mater. 2009, 8, 904.
- 5Chang, M.; Wang, Y.; Qiu, N.; Yi, Y.-Q.-Q.; Wan, X.; Li, C.; Chen, Y. Chin. J. Chem. 2017, 35, 1687.
- 6Ran, N. A.; Love, J. A.; Takacs, C. J.; Sadhanala, A.; Beavers, J. K.; Collins, S. D.; Huang, Y.; Wang, M.; Friend, R. H.; Bazan, G. C.; Nguyen, T. Q. Adv. Mater. 2016, 28, 1482.
- 7Baran, D.; Kirchartz, T.; Wheeler, S.; Dimitrov, S.; Abdelsamie, M.; Gorman, J.; Ashraf, R. S.; Holliday, S.; Wadsworth, A.; Gasparini, N.; Kaienburg, P.; Yan, H.; Amassian, A.; Brabec, C. J.; Durrant, J. R.; McCulloch, I. Energy Environ. Sci. 2016, 9, 3783.
- 8Nikolis, V. C.; Benduhn, J.; Holzmueller, F.; Piersimoni, F.; Lau, M.; Zeika, O.; Neher, D.; Koerner, C.; Spoltore, D.; Vandewal, K. Adv. Energy. Mater. 2017, 7, 1700855.
- 9Liu, J.; Chen, S.; Qian, D.; Gautam, B.; Yang, G.; Zhao, J.; Bergqvist, J.; Zhang, F.; Ma, W.; Ade, H.; Inganäs, O.; Gundogdu, K.; Gao, F.; Yan, H. Nat. Energy 2016, 1, 16089.
- 10Li, W. W.; Hendriks, K. H.; Furlan, A.; Wienk, M. M.; Janssen, R. A. J. J. Am. Chem. Soc. 2015, 137, 2231.
- 11Vandewal, K.; Benduhn, J.; Schellhammer, K. S.; Vangerven, T.; Ruckert, J. E.; Piersimoni, F.; Scholz, R.; Zeika, O.; Fan, Y. L.; Barlow, S.; Neher, D.; Marder, S. R.; Manca, J.; Spoltore, D.; Cuniberti, G.; Ortmann, F. J. Am. Chem. Soc. 2017, 139, 1699.
- 12Gao, F.; Tress, W. G.; Wang, J. P.; Inganas, O. Phys. Rev. Lett. 2015, 114, 128701.
- 13Jakowetz, A. C.; Bohm, M. L.; Zhang, J. B.; Sadhanala, A.; Huettner, S.; Bakulin, A. A.; Rao, A.; Friend, R. H. J. Am. Chem. Soc. 2016, 138, 11672.
- 14Ran, N. A.; Roland, S.; Love, J. A.; Savikhin, V.; Takacs, C. J.; Fu, Y. T., Li, H.; Coropceanu, V.; Liu, X. F.; Bredas, J. L.; Bazan, G. C.; Toney, M. F.; Neher, D.; Nguyen, T. Q. Nat. Commun. 2017, 8, 89.
- 15Vandewal, K.; Ma, Z. F.; Bergqvist, J.; Tang, Z.; Wang, E. G.; Henriksson, P.; Tvingstedt, K.; Andersson, M. R.; Zhang, F. L.; Inganas, O. Adv. Funct. Mater. 2012, 22, 3480.
- 16Zhang, H.; Li, S.; Xu, B.; Yao, H.; Yang, B.; Hou, J. J. Mater. Chem. A 2016, 4, 18043.
- 17Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. J. Am. Chem. Soc. 2017, 139, 7148.
- 18Rose, A. Phys. Rev. 1955, 97, 1538.
- 19Vandewal, K.; Tvingstedt, K.; Gadisa, A.; Inganäs, O.; Manca, J. V. Phys. Rev. B 2010, 81, 125204.
- 20Dou, J.-H.; Zheng, Y.-Q.; Yao, Z.-F.; Yu, Z.-A.; Lei, T.; Shen, X.; Luo, X.-Y.; Sun, J.; Zhang, S.-D.; Ding, Y.-F.; Han, G.; Yi, Y.; Wang, J.-Y.; Pei, J. J. Am. Chem. Soc. 2015, 137, 15947.
- 21Seguin, T. J.; Wheeler, S. E. Angew. Chem. 2016, 55, 15889.
- 22Kim, K.-H.; Lee, S.; Moon, C.-K.; Kim, S.-Y.; Park, Y.-S.; Lee, J.-H.; Woo Lee, J.; Huh, J.; You, Y.; Kim, J.-J. Nat. Commun. 2014, 5, 4769.
- 23Murray, J. S.; Politzer, P. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2011, 1, 153.
- 24Bader, R. F. W.; Carroll, M. T.; Cheeseman, J. R.; Chang, C. J. Am. Chem. Soc. 1987, 109, 7968.
- 25Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.;Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Gaussian, Inc., Wallingford, CT, USA, 2009.
- 26Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580.