Silaindacenodithiophene-Based Fused-Ring Non-Fullerene Electron Acceptor for Efficient Polymer Solar Cells†
Yaowen Nian
Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou, Guangdong, 510640 China
Search for more papers by this authorZhen Wang
Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou, Guangdong, 510640 China
Search for more papers by this authorHaiying Jiang
Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou, Guangdong, 510640 China
Search for more papers by this authorShizhen Feng
Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou, Guangdong, 510640 China
Search for more papers by this authorSuhan Li
Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou, Guangdong, 510640 China
Search for more papers by this authorLianjie Zhang
Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou, Guangdong, 510640 China
Search for more papers by this authorYong Cao
Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou, Guangdong, 510640 China
Search for more papers by this authorCorresponding Author
Junwu Chen
Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou, Guangdong, 510640 China
E-mail: [email protected]Search for more papers by this authorYaowen Nian
Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou, Guangdong, 510640 China
Search for more papers by this authorZhen Wang
Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou, Guangdong, 510640 China
Search for more papers by this authorHaiying Jiang
Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou, Guangdong, 510640 China
Search for more papers by this authorShizhen Feng
Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou, Guangdong, 510640 China
Search for more papers by this authorSuhan Li
Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou, Guangdong, 510640 China
Search for more papers by this authorLianjie Zhang
Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou, Guangdong, 510640 China
Search for more papers by this authorYong Cao
Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou, Guangdong, 510640 China
Search for more papers by this authorCorresponding Author
Junwu Chen
Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou, Guangdong, 510640 China
E-mail: [email protected]Search for more papers by this authorAbstract
In this work, a new A-D-A type nonfullerene small molecular acceptor SiIDT-IC, with a fused-ring silaindacenodithiophene (SiIDT) as D unit and 2-(3-oxo-2,3-dihydroinden-1-ylidene)malononitrile (INCN) as the end A unit, was design and synthesized. The SiIDT-IC film shows absorption peak and edge at 695 and 733 nm, respectively. The HOMO and LUMO of SiIDT-IC are of −5.47 and −3.78 eV, respectively. Compared with carbon-bridging, the Si-bridging can result in an upper-lying LUMO level of an acceptor, which is benefit to achieve a higher open-circuit voltage in polymer solar cells (PSCs). Complementary absorption and suitable energy level alignment between SiIDT-IC and wide bandgap polymer donor PBDB-T were found. For the PBDB-T:SiIDT-IC based inverted PSCs, a D/A ratio of 1: 1 was optimal to achieve a power conversion efficiency (PCE) of 7.27%. With thermal annealing (TA) of the blend film, a higher PCE of 8.16% could be realized due to increasing of both short-circuit current density and fill factor. After the TA treatment, hole and electron mobilities were elevated to 3.42 × 10−4 and 1.02 × 10−4 cm2·V−1·s−1, respectively. The results suggest that the SiIDT, a Si-bridged fused ring, is a valuable D unit to construct efficient nonfullerene acceptors for PSCs.
Supporting Information
Filename | Description |
---|---|
cjoc201700809-sup-0001-AppendixS1.pdfPDF document, 558.9 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Heeger, A. J. Adv. Mater. 2014, 26, 10.
- 2Günes, S.; Neugebauer, H.; Sariciftci, N. S. Chem. Rev. 2007, 107, 1324.
- 3Krebs, F. C.; Espinosa, N.; Hösel, M.; Søndergaard, R. R.; Jørgensen, M. Adv. Mater. 2014, 26, 29.
- 4Lu, L.; Zheng, T.; Wu, Q.; Schneider, A. M.; Zhao, D.; Yu, L. Chem. Rev. 2015, 115, 12666.
- 5Li, G.; Zhu, R.; Yang, Y. Nat. Photonics 2012, 6, 153.
- 6Cheng, Y.-J.; Yang, S.-H.; Hsu, C.-S. Chem. Rev. 2009, 109, 5868.
- 7Liu, T.; Troisi, A. Adv. Mater. 2013, 25, 1038.
- 8He, Y.; Li, Y. Phys. Chem. Chem. Phys. 2011, 13, 1970.
- 9Guo, Y.; Zhu, H.; Liu, G.; Yan, H.; Zhu, B.; Li, S.; Sun, Y.; Li, G. Chin. J. Org. Chem. 2016, 36, 172 (in Chinese).
- 10Zhao, J.; Li, Y.; Yang, G.; Jiang, K.; Lin, H.; Ade, H.; Ma, W.; Yan, H. Nat. Energy 2016, 1, 15027.
- 11Jin, Y.; Chen, Z.; Xiao, M.; Peng, J.; Fan, B.; Ying, L.; Zhang, G.; Jiang, X.-F.; Yin, Q.; Liang, Z.; Huang, F.; Cao, Y. Adv. Energy Mater. 2017, 7, 1700944.
- 12Liu, X.; Nian, L.; Gao, K.; Zhang, L.; Qing, L.; Wang, Z.; Ying, L.; Xie, Z.; Ma, Y.; Cao, Y.; Liu, F.; Chen, J. J. Mater. Chem. A 2017, 5, 17619.
- 13Lin, Y.; Zhan, X. Mater. Horiz. 2014, 1, 470.
- 14Lin, Y.; Zhan, X. Adv. Energy Mater. 2015, 5, 1501063.
- 15Zhong, Y.; Trinh, M. T.; Chen, R.; Purdum, G. E.; Khlyabich, P. P.; Sezen, M.; Oh, S.; Zhu, H.; Fowler, B.; Zhang, B.; Wang, W.; Nam, C. Y.; Sfeir, M. Y.; Black, C. T.; Steigerwald, M. L.; Loo, Y. L.; Ng, F.; Zhu, X. Y.; Nuckolls, C. Nat. Commun. 2015, 6, 8242.
- 16Sun, D.; Meng, D.; Cai, Y.; Fan, B.; Li, Y.; Jiang, W.; Huo, L.; Sun, Y.; Wang, Z. J. Am. Chem. Soc. 2015, 137, 11156.
- 17Meng, D.; Sun, D.; Zhong, C.; Liu, T.; Fan, B.; Huo, L.; Li, Y.; Jiang, W.; Choi, H.; Kim, T.; Kim, J. Y.; Sun, Y.; Wang, Z.; Heeger, A. J. J. Am. Chem. Soc. 2016, 138, 375.
- 18Sun, H.; Song, X.; Xie, J.; Sun, P.; Gu, P.; Liu, C.; Chen, F.; Zhang, Q.; Chen, Z. K.; Huang, W. ACS Appl. Mater. Interfaces 2017, 9, 29924.
- 19Liu, T.; Guo, Y.; Yi, Y.; Huo, L.; Xue, X.; Sun, X.; Fu, H.; Xiong, W.; Meng, D.; Wang, Z.; Liu, F.; Russell, T. P.; Sun, Y. Adv. Mater. 2016, 28, 10008.
- 20Liang, N.; Meng, D.; Ma, Z.; Kan, B.; Meng, X.; Zheng, Z.; Jiang, W.; Li, Y.; Wan, X.; Hou, J.; Ma, W.; Chen, Y.; Wang, Z. Adv. Energy Mater. 2017, 7, 1601664.
- 21Yan, Q.; Cai, K.; Zhao, D. Phys. Chem. Chem. Phys. 2016, 18, 1905.
- 22Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. J. Am. Chem. Soc. 2017, 139, 7148.
- 23Li, S.; Ye, L.; Zhao, W.; Zhang, S.; Mukherjee, S.; Ade, H.; Hou, J. Adv. Mater. 2016, 28, 9423.
- 24Cui, Y.; Yao, H.; Yang, C.; Zhang, S.; Hou, J. Acta Polym. Sin. 2018, 223 (in Chinese).
- 25Jia, T.; Zheng, N.; Cai, W.; Ying, L.; Huang, F. Acta Chim. Sinica 2017, 75, 808 (in Chinese).
- 26Chang, M.; Wang, Y.; Qiu, N.; Yi, Y.; Wan, X.; Li, C.; Chen, Y. Chin. J. Chem. 2017, 35, 1687.
- 27Du, X.; Zeng, Q.; Zhang, H.; Yang, B. Chin. J. Chem. 2017, 35, 551.
- 28Liu, W.; Yao, J.; Zhan, C. Chin. J. Chem. 2017, 35, 1813.
- 29Zhu, X.; Zhu, K.; Sun, B.; Fan, J.; Zhou, Y.; Song, B. Acta Chim. Sinica 2017, 75, 17020074 (in Chinese).
- 30Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. Adv. Mater. 2015, 27, 1170.
- 31Lin, Y.; Zhao, F.; He, Q.; Huo, L.; Wu, Y.; Parker, T. C.; Ma, W.; Sun, Y.; Wang, C.; Zhu, D.; Heeger, A. J.; Marder, S. R.; Zhan, X. J. Am. Chem. Soc. 2016, 138, 4955.
- 32Lin, Y.; Zhang, Z.-G.; Bai, H.; Wang, J.; Yao, Y.; Li, Y.; Zhu, D.; Zhan, X. Energy Environ. Sci. 2015, 8, 610.
- 33Lin, Y.; He, Q.; Zhao, F.; Huo, L.; Mai, J.; Lu, X.; Su, C. J.; Li, T.; Wang, J.; Zhu, J.; Sun, Y.; Wang, C.; Zhan, X. J. Am. Chem. Soc. 2016, 138, 2973.
- 34Wu, Y.; Bai, H.; Wang, Z.; Cheng, P.; Zhu, S.; Wang, Y.; Ma, W.; Zhan, X. Energy Environ. Sci. 2015, 8, 3215.
- 35Yao, H.; Chen, Y.; Qin, Y.; Yu, R.; Cui, Y.; Yang, B.; Li, S.; Zhang, K.; Hou, J. Adv. Mater. 2016, 28, 8283.
- 36Holliday, S.; Ashraf, R. S.; Wadsworth, A.; Baran, D.; Yousaf, S. A.; Nielsen, C. B.; Tan, C. H.; Dimitrov, S. D.; Shang, Z.; Gasparini, N.; Alamoudi, M.; Laquai, F.; Brabec, C. J.; Salleo, A.; Durrant, J. R.; McCulloch, I. Nat. Commun. 2016, 7, 11585.
- 37Yang, Y.; Zhang, Z. G.; Bin, H.; Chen, S.; Gao, L.; Xue, L.; Yang, C.; Li, Y. J. Am. Chem. Soc. 2016, 138, 15011.
- 38Zhang, C.; Feng, S.; Liu, Y.; Hou, R.; Zhang, Z.; Xu, X.; Wu, Y.; Bo, Z. ACS Appl. Mater. Interfaces 2017, 9, 33906.
- 39Yao, H.; Ye, L.; Hou, J.; Jang, B.; Han, G.; Cui, Y.; Su, G. M.; Wang, C.; Gao, B.; Yu, R.; Zhang, H.; Yi, Y.; Woo, H. Y.; Ade, H.; Hou, J. Adv. Mater. 2017, 29, 1700254.
- 40Zhang, Z.; Feng, L.; Xu, S.; Yuan, J.; Zhang, Z.-G.; Peng, H.; Li, Y.; Zou, Y. J. Mater. Chem. A 2017, 5, 11286.
- 41Li, S.; Ye, L.; Zhao, W.; Liu, X.; Zhu, J.; Ade, H.; Hou, J. Adv. Mater. 2017, 29, 1704051.
- 42Li, M.; Liu, Y.; Ni, W.; Liu, F.; Feng, H.; Zhang, Y.; Liu, T.; Zhang, H.; Wan, X.; Kan, B.; Zhang, Q.; Russell, T. P.; Chen, Y. J. Mater. Chem. A 2016, 4, 10409.
- 43Qiu, N.; Zhang, H.; Wan, X.; Li, C.; Ke, X.; Feng, H.; Kan, B.; Zhang, H.; Zhang, Q.; Lu, Y.; Chen, Y. Adv. Mater. 2017, 29, 1604964.
- 44Zhang, G.; Yang, G.; Yan, H.; Kim, J. H.; Ade, H.; Wu, W.; Xu, X.; Duan, Y.; Peng, Q. Adv. Mater. 2017, 29, 1606054.
- 45Cao, Q.; Xiong, W.; Chen, H.; Cai, G.; Wang, G.; Zheng, L.; Sun, Y. J. Mater. Chem. A 2017, 5, 7451.
- 46Kan, B.; Feng, H.; Wan, X.; Liu, F.; Ke, X.; Wang, Y.; Wang, Y.; Zhang, H.; Li, C.; Hou, J.; Chen, Y. J. Am. Chem. Soc. 2017, 139, 4929.
- 47Wang, J.; Wang, W.; Wang, X.; Wu, Y.; Zhang, Q.; Yan, C.; Ma, W.; You, W.; Zhan, X. Adv. Mater. 2017, 29, 1702125.
- 48Feng, L.; Yuan, J.; Zhang, Z.; Peng, H.; Zhang, Z. G.; Xu, S.; Liu, Y.; Li, Y.; Zou, Y. ACS Appl. Mater. Interfaces 2017, 9, 31985.
- 49Ma, Y.; Zhang, M.; Yan, Y.; Xin, J.; Wang, T.; Ma, W.; Tang, C.; Zheng, Q. Chem. Mater. 2017, 29, 7942.
- 50Xu, S. J.; Zhou, Z.; Liu, W.; Zhang, Z.; Liu, F.; Yan, H.; Zhu, X. Adv. Mater. 2017, 29, 1704510.
- 51Zhu, J.; Ke, Z.; Zhang, Q.; Wang, J.; Dai, S.; Wu, Y.; Xu, Y.; Lin, Y.; Ma, W.; You, W.; Zhan, X. Adv. Mater. 2017, 29, 1704713.
- 52Xiao, Z.; Jia, X.; Ding, L. Sci. Bull. 2017, 62, 1562.
- 53Xiao, Z.; Jia, X.; Li, D.; Wang, S.; Geng, X.; Liu, F.; Chen, J.; Yang, S.; Thomas, P. R.; Ding, L. Sci. Bull. 2017, 62, 1494.
- 54Wang, F.; Luo, J.; Yang, K.; Chen, J.; Huang, F.; Cao, Y. Macromolecules 2005, 2005, 2253.
- 55Chen, J.; Cao, Y. Macromol. Rapid Commun. 2007, 28, 1714.
- 56Chen, J.; Cao, Y.; Tang, B. in Macromolecules Containing Metal and Metal-Like Elements, Vol. 10, Eds.: Abd-El-Aziz, A. S.; Carraher Jr., C. E.; Harvey, P. D.; Pittman Jr., C. U.; Zeldin, M., John Wiley & Sons, New Jersey, 2010, p. 191.
- 57Hou, J.; Chen, H.; Zhang, S.; Li, G.; Yang, Y. J. Am. Chem. Soc. 2008, 130, 16144.
- 58Wang, E.; Wang, L.; Lan, L.; Luo, C.; Zhuang, W.; Peng, J.; Cao, Y. Appl. Phys. Lett. 2008, 92, 03307.
- 59Coffin, R. C.; Peet, J.; Rogers, J.; Bazan, G. C. Nat. Chem. 2009, 1, 657.
- 60Ashraf, R. S.; Chen, Z.; Leem, D. S.; Bronstein, H.; Zhang, W.; Schroeder, B.; Geerts, Y.; Smith, J.; Watkins, S.; Anthopoulos, T. D.; Sirringhaus, H.; de Mello, J. C.; Heeney, M.; McCulloch, I. Chem. Mater. 2011, 23, 768.
- 61Wang, J.-Y.; Hau, S. K.; Yip, H.-L.; Davies, J. A.; Chen, K.-S.; Zhang, Y.; Sun, Y.; Jen, A. K. Y. Chem. Mater. 2011, 23, 765.
- 62Qian, D.; Ye, L.; Zhang, M.; Liang, Y.; Li, L.; Huang, Y.; Guo, X.; Zhang, S.; Tan, Z. A.; Hou, J. Macromolecules 2012, 45, 9611.
- 63Yang, T.; Wang, M.; Duan, C.; Hu, X.; Huang, L.; Peng, J.; Huang, F.; Gong, X. Energy Environ. Sci. 2012, 5, 8208.
- 64Cai, P.; Jia, H.; Chen, J.; Cao, Y. ACS Appl. Mater. Interfaces 2015, 7, 27871.
- 65Xiao, Z.; Liu, F.; Geng, X.; Zhang, J.; Wang, S.; Xie, Y.; Li, Z.; Yang, H.; Yuan, Y.; Ding, L. Sci. Bull. 2017, 62, 1331.
- 66Jiang, H.; Wang, Z.; Zhang, L.; Zhong, A.; Liu, X.; Pan, F.; Cai, W.; Inganäs, O.; Liu, Y.; Chen, J.; Cao, Y. ACS Appl. Mater. Interfaces 2017, 9, 36061.