Pillar[n]arenes and Other Cavitands: Aspects of Complex Thermodynamics
Corresponding Author
Chiyoung Park
Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST Road, Ulsan 689-798, Korea
Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST Road, Ulsan 689-798, KoreaSearch for more papers by this authorCorresponding Author
Kyoung Taek Kim
Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST Road, Ulsan 689-798, Korea
Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST Road, Ulsan 689-798, KoreaSearch for more papers by this authorCorresponding Author
Chiyoung Park
Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST Road, Ulsan 689-798, Korea
Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST Road, Ulsan 689-798, KoreaSearch for more papers by this authorCorresponding Author
Kyoung Taek Kim
Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST Road, Ulsan 689-798, Korea
Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST Road, Ulsan 689-798, KoreaSearch for more papers by this authorAbstract
Novel cavitands, the pillar[n]arenes, have captivated the attention of supramolecular chemists since the first reported synthesis of pillar[5]arene displaying binding capability to guest molecules. Recently, pillar[n]arenes and their functionalized pillar[n]arenes have been applied in many different areas, from supramolecular chemistry to materials science. Pillar[n]arenes have symmetric pillar shapes, and consist of n hydroquinone units bridged by methylene groups, which link the 2- and 5-positions of the hydroquinone units. The inner surface of the cavity of pillar[n]arenes is π-electron-rich, thus providing a favorable environment for guest molecules bearing electron withdrawing groups. Despite the extensive efforts, however, the complex thermodynamics of pillar[n]arenes have not been systematically investigated to date. This review outlines the range and perspectives of the thermodynamic characteristics of pillar[n]arenes in comparison with other successful cavitands, such as cyclodextrins and cucurbit[n]urils.
REFERENCES
- 1 Pedersen, C. J.. J. Am. Chem. Soc., 1967, 89, 2495.
- 2 Pedersen, C. J.. J. Am. Chem. Soc., 1967, 89, 7017.
- 3 Crini, G.. Chem. Rev., 2014, 114, 10940.
- 4 Schneider, H.-J.; Hacket, F.; Rüdigerg, V.. Chem. Rev., 1998, 98, 1755.
- 5 Uekama, K.; Hirayama, F.; Irie, T.. Chem. Rev., 1998, 98, 2045.
- 6 Cram, D. J.. Science, 1983, 219, 1177.
- 7 Pinalli, R.; Dalcanale, E.. Acc. Chem. Res., 2013, 46, 399.
- 8 Pinalli, R.; Suman, M.; Dalcanale, E.. Eur. J. Org. Chem., 2004, 3, 451.
- 9 Purse, B. W.; Rebek, J.. Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 10777.
- 10 Kobayashi, K.; Yamanaka, M.. Chem. Soc. Rev., 2015, 44, 449.
- 11a Ogoshi, T.; Kanai, S.; Fujinami, S.; Yamagishi, T.-A.; Nakamoto, Y.. J. Am. Chem. Soc., 2008, 130, 5022.
- 11b Cao, D.; Kou, Y.; Liang, J.; Chen, Z.; Wang, L.; Meier, H.. Angew. Chem., Int. Ed., 2009, 48, 9721.
- 11c Yang, Y.-W.; Sun, Y.-L.; Song, N.. Acc. Chem. Res., 2014, 47, 1950.
- 11d Sun, Y.-L.; Yang, Y.-W.; Chen, D.-X.; Wang, G.; Zhou, Y.; Wang, C.-Y.; Stoddart, J. F.. Small, 2013, 9, 3224.
- 11e Zheng, D.-D.; Fu, D.-Y.; Wu, Y.; Sun, Y.-L.; Tan, L.-L.; Zhou, T.; Ma, S.-Q.; Zha, X.; Yang, Y.-W.. Chem. Commun., 2014, 50, 3201.
- 11f Zhou, Y.; Tan, L.-L.; Li, Q.-L.; Qiu, X.-L.; Qi, A.-D.; Tao, Y.; Yang, Y.-W.. Chem. Eur. J., 2014, 20, 2998.
- 11g Chen, D.-X.; Sun, Y.-L.; Zhang, Y.; Cui, J.-Y.; Shen, F.-Z.; Yang, Y.-W.. RSC Adv., 2013, 3, 5765.
- 11h Tian, M.-M.; Chen, D.-X.; Sun, Y.-L.; Yang, Y.-W.; Ji, Q.. RSC Adv., 2013, 3, 22111.
- 11i Wang, K.; Wang, C.-Y.; Wang, Y.; Li, H.; Bao, C.-Y.; Liu, J.-Y.; Zhang, S. X.-A.; Yang, Y.-W.. Chem. Commun., 2013, 49, 10528.
- 11j Hou, X.; Ke, C.; Cheng, C.; Song, N.; Blackburn, A. K.; Sarjeant, A. A.; Botros, Y. Y.; Yang, Y.-W.; Stoddart, J. F.. Chem. Commun., 2014, 50, 6196.
- 11k Fan, J.; Chen, Y.; Cao, D.; Yang, Y.-W.; Jia, X.; Li, C.. RSC Adv., 2014, 4, 4330.
- 11l Zhou, S-Y.; Song, N.; Liu, S.-X.; Chen, D.-X.; Jia, Q.; Yang, Y.-W.. Microchim. Acta, 2014, 181, 1551.
- 11m Yu, G.; Han, C.; Zhang, Z.; Chen, J.; Yan, X.; Zheng, B.; Liu, S.; Huang, F.. J. Am. Chem. Soc., 2012, 134, 8711.
- 11n Duan, Q.; Cao, Y.; Li, Y.; Hu, X.; Xiao, T.; Lin, C.; Pan, Y.; Wang, L.. J. Am. Chem. Soc., 2013, 135, 10542.
- 11o Yao, Y.; Xue, M.; Chi, X.; Ma, Y.; He, J.; Abliz, Z.; Huang, F.. Chem. Commun., 2012, 48, 6505.
- 11p Yao, Y.; Zhou, Y.; Dai, J.; Yue, S.; Xue, M.. Chem. Commun., 2014, 50, 869.
- 11q Ogoshi, T.; Hashizume, M.; Yamagishi, T.; Nakamoto, Y.. Chem. Commun., 2010, 46, 3708.
- 11r Strutt, N. L.; Forgan, R. S.; Spruell, J. M.; Botros, Y. Y.; Stoddart, J. F.. J. Am. Chem. Soc., 2011, 133, 5668.
- 11s Zhang, Z.; Xia, B.; Han, C.; Yu, Y.; Huang, F.. Org. Lett., 2010, 12, 3285.
- 11t Yao, Y.; Xue, M.; Zhang, Z.; Zhang, M.; Wang, Y.; Huang, F.. Chem. Sci., 2013, 4, 3667.
- 11u Park, C.; Jeong, E. S.; Lee, K. J.; Moon, H. R.; Kim, K. T.. Chem. Asian J., 2014, 9, 2761.
- 11v Pan, M.; Xue, M.. Chin. J. Chem., 2014, 32, 128.
- 11w Cao, D.; Meier, H.. Asian J. Org. Chem., 2014, 3, 244.
- 11x Liu, L.; Chen, Y.; Wang, L.; Meier, H.; Cao, D.. Chin. J. Chem., 2013, 31, 624.
- 11y Chen, Y.; Cao, D.; Wang, L.; He, M.; Zhou, L.; Schollmeyer, D.; Meier, H.. Chem. Eur. J., 2013, 19, 7064.
- 11z Tao, H.; Cao, D.; Liu, L.; Kou, Y.; Wang, L.; Meier, H.. Sci. China, Chem., 2012, 55, 223.
- 12 Xue, M.; Yang, Y.; Chi, X.; Zhang, Z.; Huang, F.. Acc. Chem. Res., 2012, 45, 1294.
- 13 Li, H.; Chen, D.-X.; Sun, Y.-L.; Zheng, Y. B.; Tan, L.-L.; Weiss, P. S.; Yang, Y. W.. J. Am. Chem. Soc., 2013, 135, 1570.
- 14a Zhang, H.; Zhao, Y.. Chem. Eur. J., 2013, 19, 16862.
- 14b Song, N.; Yang, Y.-W.. Sci. China, Chem., 2014, 57, 1185.
- 15 Dong, S.; Zheng, B.; Wang, F.; Huang, F.. Acc. Chem. Res., 2014, 47, 1982.
- 16 Lee, J. W.; Samal, S.; Selvapalam, N.; Kim, H.-J.; Kim, K.. Acc. Chem. Res., 2003, 3, 621.
- 17 Ma, X.; Zhao, Y., Chem. Rev., DOI: 10.1021/cr500392w.
- 18 Nimse, S. B.; Kim, T.. Chem. Soc. Rev., 2013, 42, 366.
- 19 Strutt, N. L.; Zhang, H.; Schneebeli, S. T.; Stoddart, J. F.. Acc. Chem. Res., 2014, 47, 2631.
- 20a Ogoshi, T.; Yamagishi, T.. Chem. Commun., 2014, 50, 4776.
- 20b Tan, L.-L.; Yang, Y.-W., J. Incl. Phenom. Macrocycl. Chem., DOI: 10.1007/s10847-014-0441-3.
- 21 Ogoshi, T.; Aoki, T.; Kitajima, K.; Fujinami, S.; Yamagishi, T.; Nakamoto, Y.. J. Org. Chem., 2011, 76, 328.
- 22 Ogoshi, T.; Yamagishi, T.. Eur. J. Org. Chem., 2013, 15, 2961.
- 23a Hu, X.-B.; Chen, Z.; Chen, L.; Zhang, L.; Hou, J. L.; Li, Z.-T.. Chem. Commun., 2012, 48, 10999.
- 23b Ogoshi, T.; Ueshima, N.; Sakakibara, F.; Yamagishi, T.; Haino, T.. Org. Lett., 2014, 16, 2896.
- 24 Ogoshi, T.; Ueshima, N.; Akutsu, T.; Yamafuji, D.; Furuta, T.; Sakakibara, F.; Yamagishi, T.. Chem. Commun., 2014, 50, 5774.
- 25 Duan, Q.; Cao, Y.; Li, Y.; Hu, X.; Xiao, T.; Lin, C.; Pan, Y.; Wang, L.. J. Am. Chem. Soc., 2013, 135, 10542.
- 26a Hedges, A. R.. Chem. Rev., 1998, 98, 2035.
- 26b Park, C.; Youn, H.; Kim, H.; Noh, T.; Kook, Y. H.; Oh, E. T.; Park, H. J.; Kim, C.. J. Mater. Chem., 2009, 19, 2310.
- 26c Park, C.; Oh, K.; Lee, S. C.; Kim, C.. Angew. Chem., Int. Ed., 2007, 46, 1455.
- 26d Park, C.; Lee, K.; Kim, C.. Angew. Chem., Int. Ed., 2009, 48, 1275.
- 26e Park, C.; Kim, H.; Kim, S.; Kim, C.. J. Am. Chem. Soc., 2009, 131, 16614.
- 26f Kim, H.; Kim, S.; Park, C.; Lee, H.; Park, H. J.; Kim, C.. Adv. Mater., 2010, 22, 4280.
- 26g
Ravoo, B. J.;
Darcy, R..
Angew. Chem., Int. Ed.,
2000,
39,
4324.
10.1002/1521-3773(20001201)39:23<4324::AID-ANIE4324>3.0.CO;2-O CAS PubMed Web of Science® Google Scholar
- 26h Park, C.; Lee, J.; Kim, C.. Chem. Commun., 2011, 47, 12042.
- 26i Park, C.; Lee, I. H.; Lee, S.; Song, Y.; Rhue, M.; Kim, C.. Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 1199.
- 26j Park, C.; Im, M. S.; Lee, S.; Lim, J.; Kim, C.. Angew. Chem., Int. Ed., 2008, 47, 9922.
- 26k Harada, A.; Li, J.; Kamachi, M.. Nature, 1993, 364, 516.
- 27 Szejtli, J.. Chem. Rev., 1998, 98, 1743.
- 28 Ke, C.; Strutt, N. L.; Li, H.; Hou, X.; Hartlieb, K. J.; McGonigal, P. R.; Ma, Z.; Iehl, J.; Stern, C. L.; Cheng, C.; Zhu, Z.; Vermeulen, N. A.; Meade, T. J.; Botros, Y. Y.; Stoddart, J. F.. J. Am. Chem. Soc., 2013, 135, 17019.
- 29 Han, C.; Ma, F.; Zhang, Z.; Xia, B.; Yu, Y.; Huang, F.. Org. Lett., 2010, 12, 4360.
- 30 Li, S.; Purdy, W. C.. Chem. Rev., 1992, 92, 1457.
- 31 Biedermann, F.; Nau, W. M.; Schneider, H.-J.. Angew. Chem., Int. Ed., 2014, 53, 11158.
- 32 Houk, K. N.; Leach, A. G.; Kim, S. P.; Zhang, X.. Angew. Chem., Int. Ed., 2003, 42, 4872.
- 33 Green, N. M.. Biochem. J., 1963, 89, 585.
- 34 Livnah, O.; Bayer, E. A.; Wilchek, M.; Sussman, J. L.. Proc. Natl. Acad. Sci. U. S. A., 1993, 90, 5076.
- 35 Rekharsky, M.; Mori, T.; Yang, C.; Ko, Y. H.; Selvapalam, N.; Kim, H.; Sobransingh, D.; Kaifer, A. E.; Liu, S.; Isaacs, L.; Chen, W.; Moghaddam, S.; Gilson, M. K.; Kim, K.; Inoue, Y.. Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 20737.
- 36 Moghaddam, S.; Yang, C.; Rekharsky, M.; Ko, Y. H.; Kim, K.; Inoue, Y.; Gilson, M. K.. J. Am. Chem. Soc., 2011, 133, 3570.
- 37 Cao, L.; ?ekutor, M.; Zavalij, P. Y.; Mlinari?-Majerski, K.; Glaser, R.; Isaacs, R.. Angew. Chem., Int. Ed., 2014, 53, 988.
- 38 Rekharsky, M. V.; Inoue, Y.. Chem. Rev., 1998, 98, 1875.
- 39 Breslow, R.; Dong, S. D.. Chem. Rev., 1998, 98, 1997.
- 40 Florea, M.; Nau, W. M.. Angew. Chem., Int. Ed., 2011, 50, 9338.
- 41 Assaf, K. I.; Nau, W. M.. Chem. Soc. Rev., 2015, 44, 394.
- 42 Praetorius, A.; Bailey, D. M.; Schwarzlose, T.; Nau, W. M.. Org. Lett., 2008, 10, 4089.
- 43 El-Sheshtawy, H. S.; Bassil, B. S.; Assaf, K. I.; Kortz, U.; Nau, W. M.. J. Am. Chem. Soc., 2012, 134, 19935.
- 44 Bondi, A., Physical Properties of Molecular Crystals, Liquids, and Glasses, Wiley, New York, 1968.
- 45 Richards, F. M.. Annu. Rev. Biophys. Bioeng., 1977, 6, 151.
- 46
Mecozzi, S.;
Rebek, J..
Chem. Eur. J.,
1998,
4,
1016.
10.1002/(SICI)1521-3765(19980615)4:6<1016::AID-CHEM1016>3.0.CO;2-B CAS Web of Science® Google Scholar
- 47 Ajami, D.; Hou, J.-L.; Dale, T. J.; Barrett, E.; Rebek, J.. Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 10430.
- 48 Hooley, R. J.; Van Anda, H. J.; Rebek, J.. J. Am. Chem. Soc., 2007, 129, 13464.
- 49 Nau, W. M.; Florea, M.; Assaf, K. I.. Isr. J. Chem., 2011, 51, 559.
- 50a Chodera, J. D.; Mobley, D. L.. Annu. Rev. Biophys., 2013, 42, 121.
- 50b Liu, L.; Guo, Q.-X.. Chem. Rev., 2001, 101, 673.
- 51 Williams, D. H.; Westwell, M. S.. Chem. Soc. Rev., 1998, 27, 57.
- 52 Dunitz, J. D.. Chem. Biol., 1995, 2, 709.
- 53 Izatt, R. M.; Pawlak, K.; Bradshaw, J.. Chem. Rev., 1991, 91, 1721.
- 54 Izatt, R. M.; Rytting, J. H.; Nelson, D. P.; Haymore, B. L.; Christensen, J. J.. Science, 1969, 164, 443.
- 55 Izatt, R. M.; Nelson, D. P.; Rytting, J. H.; Haymore, B. L.; Christensen, J. J.. J. Am. Chem. Soc., 1971, 93, 1619.
- 56 Meyer, E. A.; Castellano, R. K.; Diederich, F.. Angew. Chem., Int. Ed., 2003, 42, 1210.
- 57 Leffler, J. E.. J. Org. Chem., 1955, 20, 1202.
- 58 Grunwald, E.; Steel, C.. J. Am. Chem. Soc., 1995, 117, 5687.
- 59 Linert, W.; Han, L.-F.; Likovits, I.. Chem. Phys., 1989, 139, 441.
- 60 Danil de Namor, A. F.; Tanaka, D. A. P.; Regueira, L. N.; Gómez-Orellana, I.. J. Chem. Soc., Faraday Trans., 1992, 88, 1665.
- 61 Inoue, Y.; Hakushi, T.; Liu, Y.; Tong, L.-H.; Shen, B.-J.; Jin, D.-S.. J. Am. Chem. Soc., 1993, 115, 475.
- 62 Inoue, Y.; Liu, Y.; Tong, L.-H.; Shen, B.-J.; Jin, D.-S.. J. Am. Chem. Soc., 1993, 115, 10637.
- 63 Inoue, Y.; Hakushi, T.. J. Chem. Soc., Perkin Trans. 2, 1985, 935.
- 64 Gómez, B.; Francisco, V.; Fernández-Nieto, F.; Garcia-Rio, L.; Martín-Pastor, M.; Paleo, M. R.; Sardina, F. J.. Chem. Eur. J., 2014, 20, 12123.
- 65 Tan, L.-L.; Zhang, Y.; Li, B.; Wang, K.; Zhang, S. X.-A.; Tao, Y.; Yang, Y.-W.. New J. Chem., 2014, 38, 845.
- 66 Song, N.; Chen, D.-X.; Qiu, Y.-C.; Yang, X.-Y.; Wu, B.; Tian, W.; Yang, Y.-W.. Chem. Commun., 2014, 50, 8231.
- 67 Masson, E.; Ling, X.; Joseph, R.; Kyeremet-Mensah, L.; Lu, X.. RSC Adv., 2012, 2, 1213.