Interaction between (1,1′-Binaphthalene)-2,2′-diol and Lecithin Liposome
Liuhua Chen
Department of Chemistry, Tongji University, Shanghai 200092, China
Search for more papers by this authorShenjing An
Department of Chemistry, Tongji University, Shanghai 200092, China
Search for more papers by this authorDazhang Zhu
Department of Chemistry, Tongji University, Shanghai 200092, China
Search for more papers by this authorZijie Xu
Department of Chemistry, Tongji University, Shanghai 200092, China
Search for more papers by this authorZhixian Hao
Department of Chemistry, Tongji University, Shanghai 200092, China
Search for more papers by this authorLongwu Chen
Department of Chemistry, Tongji University, Shanghai 200092, China
Search for more papers by this authorLiuhua Chen
Department of Chemistry, Tongji University, Shanghai 200092, China
Search for more papers by this authorShenjing An
Department of Chemistry, Tongji University, Shanghai 200092, China
Search for more papers by this authorDazhang Zhu
Department of Chemistry, Tongji University, Shanghai 200092, China
Search for more papers by this authorZijie Xu
Department of Chemistry, Tongji University, Shanghai 200092, China
Search for more papers by this authorZhixian Hao
Department of Chemistry, Tongji University, Shanghai 200092, China
Search for more papers by this authorLongwu Chen
Department of Chemistry, Tongji University, Shanghai 200092, China
Search for more papers by this authorAbstract
The interaction between (1,1′-binaphthalene)-2,2′-diol (BINOL) and lecithin liposome was studied by UV-Vis, fluorescence and 1H NMR spectroscopies. BINOL can obviously associate with lecithin liposome and the preferential binding site of BINOL with lecithin liposome is located in the headgroup region. The hydrogen bond and electrostatic interaction should exist in BINOL/liposome system, which restricts intra-annular rotation of naphthol moieties. Therefore, the fluorescence intensity of BINOL increases when a small quantity of liposome is added into the system. The partition coefficient KD between the lecithin liposome and the aqueous phase is 310.9. With the increase of BINOL concentration, the micropolarity (I1/I3) and membrane fluidity of liposome decreased, while the viscosity of membrane increased.
REFERENCES
- 1 Kremer, J. M. H.; van der Esker, M. W. J.; Pathmamanoharan, C.; Wiersema, P. H.. Biochemistry, 1977, 16, 3932.
- 2 Zhang, L.; Peng, T.; Cheng, S. X.; Zhuo, R. X.. J. Phys. Chem. B, 2004, 108, 7763.
- 3 Mu, X. M.; Zhong, Z. S.. Int. J. Pharm., 2006, 318, 55.
- 4 Xian, D. L.; Huang, K. L.; Liu, S. Q.; Xiao, J. Y.. Acta Chim. Sinica, 2007, 65, 2663 (in Chinese).
- 5 Budai, L.; Hajdu, M.; Budai, M.; Grof, P.; Beni, S.; Noszal, B.; Klebovich, I.; Antal, I.. Int. J. Pharm., 2007, 343, 34.
- 6 Fan, M. H.; Xu, S. Y.; Xia, S. Q.; Zhang, X. M.. J. Agric. Food Chem., 2007, 55, 3089.
- 7 Zhang, C. Y.; Xu, X. M.; Wu, Z. F.; Han, G. B.. Acta Chim. Sinica, 2005, 63, 450 (in Chinese).
- 8 Rodrigues, C.; Gameiro, P.; Reis, S.; Lima, J. L. F. C.; de Castro, B.. Biophys. Chem., 2001, 94, 97.
- 9 Kepczynski, M.; Nawalany, K.; Kumorek, M.; Kobierska, A.; Jachimska, B.; Nowakowska, M.. Chem. Phys. Lipids, 2008, 155, 7.
- 10 Xu, Y. F.; McCarroll, M.. J. Photochem. Photobiol. A: Chem., 2006, 178, 50.
- 11 Chen, Y.; Wang, X. Z.; Pang, J. Y.; Xu, Z. L.. Acta Sci. Nat. Univ. Sunyatseni, 2007, 46, 45 (in Chinese).
- 12 Przybylski, P.; Kira, J.; Schroeder, G.; Brzezinski, B.; Bartl, F.. J. Phys. Chem. A, 2008, 112, 8061.
- 13 Maitani, Y.; Igarashi, S.; Sato, M.; Hattori, Y.. Int. J. Pharm., 2007, 342, 33.
- 14 Marcelo, G.; de Francisco, R.; González-álvarez, M. J.; Mendicuti, F.. J. Photochem. Photobiol. A Chem., 2008, 200, 114.
- 15 Ikonen, M.; Murtomaki, L.; Kontturi, K.. J. Electroanal. Chem., 2007, 602, 189.
- 16 Omran, A. A.; Kitamura, K.; Takegami, S.; El-Sayed, A. Y.; Abdel-Mottale, M.. J. Pharm. Biomed. Anal., 2001, 25, 319.
- 17 Rodrigues, C.; Gameiro, P.; Reis, S.; Lima, J. L. F. C.; de Castro, B.. Anal. Chim. Acta, 2001, 428, 103.
- 18 Zou, A. H.; Gu, Q.; He, Q. G.; Guo, R.; Yuan, C. W.. Colloids Surf. A, 2003, 224, 75.
- 19 Xi, J. Q.; Guo, R.. Int. J. Biol. Macromol., 2007, 40, 305.
- 20 Behera, K.; Pandey, S.. J. Colloid Interface Sci., 2007, 316, 803.
- 21 Khatua, D.; Gupta, A.; Dey, J.. J. Colloid Interface Sci., 2006, 298, 451.
- 22 Hamai, S.. Bull. Chem. Soc. Jpn., 1999, 72, 2177.
- 23 Hashimoto, M.; Hossain, S.; Masumura, S.. Exp. Gerontol., 1999, 34, 687.
- 24 Lagane, B.; Mazeres, S.; Le Grimellec, C.; Cezanne, L.; Lopez, A.. Biophys. Chem., 2002, 95, 7.
- 25 Goni, F. M.; Alonso, A.. Biochim. Biophys. Acta, 2000, 1508, 51.
- 26 Kachel, K.; Asuncion-Punzalan, E.; London, E.. Biochim. Biophys. Acta, 1998, 1374, 63.
- 27 Yang, C. Y.; Liu, Y.; Li, Q. G.; Li, L. W.. Acta Phys. Chim. Sin., 2007, 23, 635 (in Chinese).
- 28 Sujatha, J.; Mishra, A. K.. J. Photochem. Photobiol. A: Chem., 1997, 104, 173.
- 29 Geng, H.; Meng, Z. Q.; Zhang, Q. X.. Toxicol. in vitro, 2006, 20, 575.
- 30 Alzalamira, A.; Ceccacci, F.; Monti, D.; Mortera, S. L.; Mancini, G.; Sorrenti, A.; Venanzi, M.; Villani, C.. Tetrahedron: Asymmetry, 2007, 18, 1868.
- 31 Bombelli, C.; Borocci, S.; Cruciani, O.; Mancini, G.; Monti, D.; Segre, A. L.; Sorrenti, A.; Venanzi, M.. Tetrahedron Asymmetry, 2008, 19, 124.
- 32 Grancelli, A.; Morros, A.; Cabanas, M. E.; Domenech, O.; Merino, S.; Vazquez, J. L.; Montero, M. T.; Vinas, M.; Hernndez-Borrell, J.. Langmuir, 2002, 18, 9177.