Amperometric Sensor Based on Neutral Red-Doped Silica Nanoparticles Coupled with Microdialysis for the Measurement of Glutamate in the Rat Striatum
Xiao-Hua Li
Department of Chemistry, East China Normal University, Shanghai 200062, China
Search for more papers by this authorYue-Zhong Xian
Department of Chemistry, East China Normal University, Shanghai 200062, China
Search for more papers by this authorZong-Hong Xie
Department of Chemistry, East China Normal University, Shanghai 200062, China
Search for more papers by this authorHong Min
Department of Chemistry, East China Normal University, Shanghai 200062, China
Search for more papers by this authorChen-Xin Li
Department of Chemistry, East China Normal University, Shanghai 200062, China
Search for more papers by this authorXiao-Hua Li
Department of Chemistry, East China Normal University, Shanghai 200062, China
Search for more papers by this authorYue-Zhong Xian
Department of Chemistry, East China Normal University, Shanghai 200062, China
Search for more papers by this authorZong-Hong Xie
Department of Chemistry, East China Normal University, Shanghai 200062, China
Search for more papers by this authorHong Min
Department of Chemistry, East China Normal University, Shanghai 200062, China
Search for more papers by this authorChen-Xin Li
Department of Chemistry, East China Normal University, Shanghai 200062, China
Search for more papers by this authorAbstract
Amperometric sensor based on neutral red-doped silica (NRSiO2) nanoparticles (NPs) was fabricated and coupled with a microdialysis sampling system for the detection of glutamate (Glu) in the rat striatum. The NRSiO2 NPs [about (45±3) nm] were prepared with water-in-oil (W/O) microemulsion method, and characterized by transmission electron microscope (TEM) technique. The neutral red (NR) doped in silica network could maintain its high electroactivity and behave as an excellent electron mediator for electrocatalysis of hydrogen dioxide. Furthermore, the silica surface could prevent the leakage of NR, hence, the stability of biosensor was improved. The novel Glu biosensor showed a linear range from 5.0×10−7 to 1.5×10−4 mol/L, with a detection limit of 2.0×10−7 mol/L(S/N3).
REFERENCES
- 1 Bhadriraju, K.; Chen, C.. Drug Discov. Today, 2002, 7, 612.
- 2 Burmeister, J.; Pomerleau, F.; Palmer, M.; Day, B.; Huettl, P.; Gerhardt, G.. J. Neurosci. Methods, 2002, 119, 163.
- 3 Finnie, J. W., Aust. Vet. J., 2001, 79, 628.
- 4 Karyakin, A. A.; Karyakina, E. E.; Gorton, L.. Anal. Chem., 2000, 72, 1720.
- 5 Niwa, O.; Torimitsu, K.; Morita, M.; Osborne, P.; Yamamoto, K.. Anal. Chem., 1996, 68, 1865.
- 6 Cordek, J.; Wang, X.; Tan, W.. Anal. Chem., 1999, 71, 1529.
- 7 Berners, M.; Boutelle, M.; Fillenz, M.. Anal. Chem., 1994, 66, 2017.
- 8 Niwa, O.; Torimitsu, K.; Morita, M.; Osborne, P.; Yamamoto, K.. Anal. Chem., 1996, 68, 1865.
- 9 Kulagina, N. V.; Shankar, L.; Michael, A. C.. Anal. Chem., 1999, 71, 5093.
- 10 Poitry, S.; Poitry-Yamate, C.; Innocent, C.; Cosnier, S.; Tsacopoulos, M.. Electrochim. Acta, 1997, 42, 3217.
- 11 O'Neill, R. D.; Chang, S.-C.; Lowry, J. P.; McNeil, C. J.. Biosens. Bioelectron., 2004, 19, 1521.
- 12 Hirano, A.; Moridera, N.; Akashi, M.; Saito, M.; Sugawa, M.. Anal. Chem., 2003, 75, 3775.
- 13 Ryan, M. R.; Lowry, J. P.; O'Neill, R. D.. Analyst, 1997, 122, 1419.
- 14 Xuan, G. S.; Kim, M. C.; Her, D. S.; Lee, H. L.. Chin. J. Chem., 2006, 24, 546.
- 15 Tang, J. L.; Han, X. J.; Huang, W. M.; Wang, E. K.. Chin. J. Chem., 2002, 20, 263.
- 16 Morris, N. A.; Cardosi, M. F.; Birch, B. J.; Turner, A. P. F.. Electroanalysis, 1992, 4, 1.
- 17 Daisuke, O.. J. Neurosci. Methods, 2000, 101, 85.
- 18 Chen, S. M.; Lin, K. C.. J. Electroanal. Chem., 2001, 511, 101.
- 19 Arkady, A. K.; Yulia, N. I.; Elena, E. K.. Electrochem. Commun., 2003, 5, 677.
- 20 Creager, S. E.; Marks, G. T.; Aikens, D. A.; Richtol, H. H.. J. Electroanal. Chem., 1983, 152, 197.
- 21 Vicente, F.; Roig, A.; García-Jareño, J. J.; Trijueque, J.; Navarro-Laboulais, J.; Scholl, H.. Port. Electrochim. Acta, 1995, 13, 137.
- 22 Ungerstedt, U.. J. Intern. Med., 1991, 230, 365.
- 23
Chaurasia, C. S..
Biomed. Chromatogr.,
1999,
13,
317.
10.1002/(SICI)1099-0801(199908)13:5<317::AID-BMC891>3.0.CO;2-I CAS PubMed Web of Science® Google Scholar
- 24 Elmquist, W. F.; Sawchuk, R. J.. Pharm. Res., 1997, 14, 267.
- 25 Davies, M. I.. Anal. Chim. Acta, 1999, 379, 227.
- 26 Woitzik, J.; Abromeit, N.; Schaefer, F.. Anal. Biochem., 2001, 289, 10.
- 27 Zhou, J. X.; Heckert, D. M.; Zuo, H.; Lunte, C. E.; Lunte, S. M.. Anal. Chim. Acta, 1999, 379, 307.
- 28 Malone, M. A.; Zuo, H.; Lunte, S. M.; Smyth, M. R.. J. Chromatogr. A, 1995, 700, 73.
- 29 Xu, F.; Wang, L.; Gao, M. N.; Jin, L. T.; Jin, J. Y.. Talanta, 2002, 57, 365.
- 30 Kulagina, N. V.; Shankar, L.; Michael, A. C.. Anal. Chem., 1999, 71, 5093.
- 31 Santra, S.; Zhang, P.; Wang, K.; Tapec, R.; Tan, W.. Anal. Chem., 2001, 73, 4988.
- 32 Arriagada, F. J.; Osseo-Asare, K.. J. Colloid Interf. Sci., 1999, 211, 210.
- 33 Bao, X. M.; Su, Y., The Stereotaxic Atlas of the Rat Brain, People's Healthy Press, Beijing, China, 1991 (in Chinese).
- 34 Sun, Y. X.; Ye, B. X.; Zhang, W. M.; Zhou, X. Y.. Anal. Chim. Acta, 1998, 363, 75.
- 35 Walker, M. C.; Galley, P. R.; Errington, M. L.; Shorvon, S. D.; Jefferys, G. R.. J. Neurochem., 1995, 65, 725.
- 36 Lada, M.; Kennedy, R. T.. J. Neurosci. Methods, 1995, 63, 147.
- 37 Stover, J. F.; Lowitzsch, K.; Kempski, O. S.. Neurosci. Lett., 1997, 238, 25.