Geometric and Electronic Properties of Metallofullerene Fe@C60†
Chun-Mei Tang
Department of Applied Physics and Materials Chemistry Laboratory, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
Search for more papers by this authorJin-Long Yang
Laboratory of Bond Selective Chemistry, University of Science and Technology of China, Hefei, Anhui 230032, China
Search for more papers by this authorXin Wang
Department of Applied Physics and Materials Chemistry Laboratory, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
Search for more papers by this authorChun-Mei Tang
Department of Applied Physics and Materials Chemistry Laboratory, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
Search for more papers by this authorJin-Long Yang
Laboratory of Bond Selective Chemistry, University of Science and Technology of China, Hefei, Anhui 230032, China
Search for more papers by this authorXin Wang
Department of Applied Physics and Materials Chemistry Laboratory, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
Search for more papers by this authorAbstract
The generalized gradient approximation (GGA) based on density functional theory (DFT) was used to analyze the structural and electronic properties of Fe@C60 and C59Fe for comparison. Among the six possible optimized geometries of Fe@C60, the most favorable endohedral site of Fe atom is under the center of a hexagon ring, i.e., Fe@C60-6. The Energy gap (Eg) of Fe@C60-6 is smaller than those of C59Fe and C60, indicating the higher chemical reactivity. The magnetic moment of Fe atom in Fe@C60-6 is preserved to some extent though there is the hybridization between the Fe atom and C atoms of the cage, in contrast to the completely quenched magnetic moment of the Fe atom in C59Fe.
REFERENCES
- 1 Kratschmer, W. L.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R.. Nature, 1990, 354, 347.
- 2 Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E.. Nature, 1985, 318, 162.
- 3 Lu, J.; Luo, Y.; Huang, Y. H.; Zhang, X. W.; Zhao, X. G.. Solid State Commun., 2001, 118, 309.
- 4 Lu, J.; Zhou, Y. S.; Zhang, X. W.; Zhao, X. G.. Chem. Phys. Lett., 2002, 352, 8.
- 5 Claridge, J. B.; Kubozono, Y.; Rosseinsky, M. J.. Chem. Mater., 2003, 15, 1830.
- 6 Deng, R.; Echt, O.. Chem. Phys. Lett., 2002, 353, 11.
- 7 Kaji, T.; Shimoda, T.; Inoue, H.; Kuninobu, Y.; Matsuo, Y.; Nakamura, E.; Saiki, K.. J. Phys. Chem. B, 2004, 108, 9914.
- 8 Yang, Y.; Wang, F. H.; Zhou, Y. S.. Phys. Rev. A, 2005, 71, 13202.
- 9 Pan, X. M.; Fu, Z.; Hong, B.; Zhao, L.; Qiu, Y. Q.; Su, Z. M.; Wang, R. S.. Synth. Met., 2005, 152, 325.
- 10 Lu, J.; Zhang, X. W.; Zhao, X. G.. Chem. Phys. Lett., 2000, 332, 51.
- 11 Son, M. S.; Sung, Y. K.. Chem. Phys. Lett., 1995, 245, 113.
- 12 Pradeep, T.; Kulkarni, G. U.; Kannan, K. R.; Row, T. N. G.. J. Am. Chem. Soc., 1992, 114, 2272.
- 13 Basir, Y. J.; Anderson, S. L.. Int. J. Mass Spectrom., 1999, 187, 603.
- 14 Byszewski, P.; Diduszko, R.; Kowalska, E.. Electrochem. Soc., 1994, 24, 1392.
- 15 Byszewski, P.; Kucharski, Z.. Fullerene Sci. Technol., 1997, 5, 1261.
- 16 Branz, W.; Billas, I. M. L.; Malinowski, N.; Tast, F.; Heinebrodt, M.; Martin, T. P.. J. Chem. Phys., 1998, 109, 3425.
- 17 Billas, I. M. L.; Massobrio, C.; Boero, M.; Parrinello, M.; Branz, W.; Tast, F.; Malinowski, M.; Martin, T. P.. Comput. Mater. Sci., 2000, 17, 191.
- 18 Ding, C. G.; Yang, J. L.; Cui, X. Y.. J. Chem. Phys., 1999, 111, 8481.
- 19 Artacho, E.; S'anchez-Portal, D.; Ordej'on, P.; Garc'la, A.; Soler, J. M.. Phys. Status Solidi, 1999, 215, 809.
- 20 Becke, A. D.. J. Chem. Phys. Rev., 1965, 140, 1133.
- 21 Perdew, J. P.; Wang, Y.. Phys. Rev. B, 1992, 45, 13244.
- 22a Hohenberg, P.; Kohn, W.. Phys. Rev., 1964, 136, 864.
- 22b Kohn, W.; Sham, L.. Phys. Rev. A, 1965, 140, 1133.
- 23 Fletcher, R., Practical Methods of Optimization, Vol. 1, Wiley, New York, 1980.
- 24 Liu, S. Y.; Sun, S. Q.. J. Organomet. Chem., 2000, 599, 74.
- 25 Guo, T.; Jin, C.; Smalley, R. E.. J. Phys. Chem., 1991, 95, 4948.
- 26 Hawkins, J. M.; Meyer, A.; Lewis, T. A.; Loren, S.; Hollander, F. J.. Science, 1991, 252, 312.
- 27 Hedberg, K.; Hedberg, L.; Bethune, D. S.; Brown, C. A.; Dorn, H. C.; Johnson, R. D.; Vries, M.. Science, 1991, 254, 410.
- 28 Haufler, R. E.; Wang, L. S.; Chibante, L. P. F.; Jin, C. M.; Conceicao, J.; Chai, Y.; Smalley, R. E.. Chem. Phys. Lett., 1991, 179, 449.
- 29 Lu, G. L.; Deng, K. M.; Wu, H. P.; Yang, J. L.; Wang, X.. J. Chem. Phys., 2006, 124, 54305.
- 30 Andreoni, W.; Curioni, A.. Appl. Phys. A, 1998, 66, 299.
- 31 Kanbara, T.; Kubozono, Y.; Takabayshi, Y.; Fujiki, S.; Iida, S.; Haruyama, Y.; Kashino, S.; Emura, S.; Akasaka, T.. Phys. Rev. B, 2001, 64, 113403.