Decision support systems for assessment of biorefinery transformation strategies
Corresponding Author
Marzouk Benali
Natural Resources Canada, CanmetENERGY, Varennes, Québec, Canada
Author to whom correspondence may be addressed. E-mail address: [email protected]
Search for more papers by this authorJawad Jeaidi
Natural Resources Canada, CanmetENERGY, Varennes, Québec, Canada
Search for more papers by this authorBehrang Mansoornejad
Natural Resources Canada, CanmetENERGY, Varennes, Québec, Canada
Search for more papers by this authorOlumoye Ajao
Natural Resources Canada, CanmetENERGY, Varennes, Québec, Canada
Search for more papers by this authorBanafsheh Gilani
Natural Resources Canada, CanmetENERGY, Varennes, Québec, Canada
Search for more papers by this authorNima Ghavidel Mehr
Natural Resources Canada, CanmetENERGY, Varennes, Québec, Canada
Search for more papers by this authorCorresponding Author
Marzouk Benali
Natural Resources Canada, CanmetENERGY, Varennes, Québec, Canada
Author to whom correspondence may be addressed. E-mail address: [email protected]
Search for more papers by this authorJawad Jeaidi
Natural Resources Canada, CanmetENERGY, Varennes, Québec, Canada
Search for more papers by this authorBehrang Mansoornejad
Natural Resources Canada, CanmetENERGY, Varennes, Québec, Canada
Search for more papers by this authorOlumoye Ajao
Natural Resources Canada, CanmetENERGY, Varennes, Québec, Canada
Search for more papers by this authorBanafsheh Gilani
Natural Resources Canada, CanmetENERGY, Varennes, Québec, Canada
Search for more papers by this authorNima Ghavidel Mehr
Natural Resources Canada, CanmetENERGY, Varennes, Québec, Canada
Search for more papers by this authorAbstract
The development of integrated biorefineries is one of the currently proposed strategies for transforming into a low carbon bio-economy. Although different biorefining technologies can be integrated into host mills such as the Kraft and thermomechanical pulp processes, it is important to select the most appropriate technology taking into consideration the specificities and on-site constraints. In this work, a decision support tool was developed and applied to industrial case studies for biorefinery implementation. Firstly, the tool was used for scenario-based simultaneous analysis of the technical, economic, and environmental impacts in a single platform for different biorefinery implementation strategies. Its robustness and flexibility were demonstrated by two comprehensive industrial cases covering biorefinery transformation strategies for a Kraft pulp corporation involving three sites and a newsprint corporation with two sites. The tool made it possible to elucidate the advantages of lignin recovery implementation at modern and median Kraft pulping sites. Also, it revealed the objective basis for selecting between lignin recovery, hemicelluloses extraction, and thermochemical platforms biorefineries. The most suitable plant capacity for profitability was determined in the case of repurposing a median or average integrated newsprint mill into a biofuel production facility based on the pyrolysis platform. In a modern integrated newsprint mill, it was shown that phenol-formaldehyde (PF) resins production can significantly decrease production costs, diversify the product portfolio, and mitigate risks associated with the core product line.
REFERENCES
- 1 A. Roos, M. Stendahl, “ The emerging Bio-Economy and the Forest Sector,” Forests, Business and Sustainability, R. Panwar, R. Kozak, E. Hansen, Eds., Routledge, London 2016.
- 2Grand View Research, White Biotechnology Market Analysis by Product (Biofuels, Biomaterials, Biochemicals, Industrial Enzymes), by Application (Bioenergy, Food & Feed Additives, Pharmaceutical ingredients, Personal Care & Household Products) and Segment Forecasts to 2024 GVR-1-68038-135-1, Grand View Research, Inc., San Francisco 2016, https://www.grandviewresearch.com/industry-analysis/white-biotechnology-market.
- 3 M. Zabouri, M. A. Demers, E. Johnson, A. McCracken, R. Swanson, M. A. Liboiron, M. Lakhdari, Bioeconomy and Green Economy: Report on International Scan, Natural Resources Canada, Canadian Forest Service, Ottawa 2015.
- 4
M. Benali,
O. Ajao,
J. Jeaidi,
B. Gilani,
B. Mansoornejad, “ Integrated Lignin-Kraft Pulp Biorefinery for the Production of Lignin and Its Derivatives: Economic Assessment and LCA-Based Environmental Footprint,”
Production of Biofuels and Chemicals from Lignin, Z. Fang, R. L. Smith, Eds.,
Springer,
Singapore
2016, p. 379.
10.1007/978-981-10-1965-4_13 Google Scholar
- 5 J. Moncada, V. M. Aristizábal, C. A. Cardona, Biochem. Eng. J. 2016, 116, 122.
- 6McKinsey & Company, Opportunities for Canadian energy technologies in global markets, M34–1 9 /2013E–PDF, 2012, http://publications.gc.ca/collections/collection_2014/rncan-nrcan/M34-19-2013-eng.pdf.
- 7 U. Wising, P. Stuart, Pulp Pap.-Canada 2006, 107, 25.
- 8
M. Sillanpää,
C. Ncibi, “ Biorefineries: Industrial-Scale Production Paving the Way for Bioeconomy,”
A Sustainable Bioeconomy: The Green Industrial Revolution, 1st edition, M. Sillanpää, C. Ncibi, Eds.,
Springer International Publishing,
Cham
2017, p. 233.
10.1007/978-3-319-55637-6_7 Google Scholar
- 9 K. Wagemann, Biorefineries roadmap as part he German Federal Government action plans for the material and energetic utilisation of renewable raw materials, Berlin 2012, https://www.bmbf.de/pub/Roadmap_Biorefineries_eng.pdf.
- 10
M. Sillanpää,
N. Chaker,
A Sustainable Bioeconomy: The Green Industrial Revolution, 1st edition,
Springer International Publishing,
Cham
2017.
10.1007/978-3-319-55637-6 Google Scholar
- 11 M. Aalto, “ The Finnish bioeconomy strategy: Background and implementation,” Bioeconomy Workshop, Riga, Latvia, 25 August 2016.
- 12 S. Lhôte, B. De Galembert, The forest fibre and paper industry in 2050: Investing in Europe for industry transformation, Confederation of European Paper Industries, Brussels 2017, http://www.cepi.org/system/files/public/documents/publications/innovation/2017/roadmap_2050_v07_printable_version.pdf.
- 13 M. Benali, Z. Périn-Levasseur, L. Savulescu, L. Kouisni, N. Jemaa, T. Kudra, M. Paleologou, Biomass Bioenerg. 2014, 67, 473.
- 14 J. Jeaidi, P. R. Stuart, J.-For. 2011, 1, 62.
- 15 S. Jones, E. Tan, J. Jacobson, P. Meyer, A. Dutta, K. Cafferty, L. Snowden-Swan, A. Padmaperuma, Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels Fast Pyrolysis and Hydrotreating Bio-Oil Pathway, U.S. Department of Energy, Washington 2013, http://www.pnnl.gov/main/publications/external/technical_reports/PNNL-23053.pdf.
- 16 J. Kautto, M. J. Realff, A. J. Ragauskas, Biomass Conversion and Biorefinery 2013, 3, 199.
- 17 A. Arevalo-Gallegos, Z. Ahmad, M. Asgher, R. Parra-Saldivar, H. M. N. Iqbal, Int. J. Biol. Macromol. 2017, 99, 308.
- 18 G. De Bhowmick, A. K. Sarmah, R. Sen, Bioresource Technol. 2018, 247, 1144.
- 19 Y. Cheng, Z. Thow, C.-H. Wang, Powder Technol. 2016, 296, 87.
- 20 Y. Cheng, Z. Zhou, M. H. Alma, D. Sun, W. Zhang, J. Jiang, J. Biobased Mater. Bio. 2016, 10, 76.
- 21 C. Cui, H. Sadeghifar, S. Sen, D. S. Argyropoulos, Bioresources 2013, 8, 864.
- 22 C. Cui, R. Sun, D. S. Argyropoulos, ACS Sustain. Chem. Eng. 2014, 2, 959.
- 23 L. Kouisni, A. Gagné, K. Maki, P. Holt-Hindle, M. Paleologou, ACS Sustain. Chem. Eng. 2016, 4, 5152.
- 24 E. Balu, U. Lee, J. N. Chung, Int. J. Hydrogen Energ. 2015, 40, 14104.
- 25 J. Isaksson, A. Åsblad, T. Berntsson, Clean Technol. Envir. 2014, 16, 1393.
- 26 A. Azapagic, Trends Biotechnol. 2014, 32, 1.
- 27 J. S. Kim, Y. Y. Lee, T. H. Kim, Bioresource Technol. 2016, 199, 42.
- 28 L. Diaz-Balteiro, C. Romero, Forest Ecol. Manag. 2008, 255, 3222.
- 29 G. Guillén-Gosálbez, I. Grossmann, Comput. Chem. Eng. 2010, 34, 42.
- 30 J. E. Santibañez-Aguilar, J. B. González-Campos, J. M. Ponce-Ortega, M. Serna-González, M. M. El-Halwagi, Ind. Eng. Chem. Res. 2011, 50, 8558.
- 31 R. Ruiz-Femenia, G. Guillén-Gosálbez, L. Jiménez, J. A. Caballero, Chem. Eng. Sci. 2013, 95, 1.
- 32 C. Cambero, T. Sowlati, Appl. Energ. 2016, 178, 721.
- 33 C. L. Sy, A. T. Ubando, K. B. Aviso, R. R. Tan, J. Clean. Prod. 2018, 170, 496.
- 34 J. Wheeler, M. A. Páez, G. Guillén-Gosálbez, F. D. Mele, Comput. Chem. Eng. 2018, 113, 11.
- 35 M. A. Papalexandrou, P. A. Pilavachi, A. I. Chatzimouratidis, Process Saf. Environ. 2008, 86, 360.
- 36 J. A. Schaidle, C. J. Moline, P. E. Savage, Environ. Prog. Sustain. 2011, 30, 743.
- 37 J. Cohen, M. Janssen, V. Chambost, P. R. Stuart, Pulp Pap.-Canada 2010, 111, 24.
- 38 N. Martinkus, S. A. M. Rijkhoff, S. A. Hoard, W. Shi, P. Smith, M. Gaffney, M. Wolcott, Biomass Bioenerg. 2017, 97, 139.
- 39 M. A. Mandegari, S. Farzad, E. van Rensburg, J. F. Görgens, Biofuel. Bioprod. Bior. 2017, 11, 971.
- 40 N. Sammons, M. Eden, W. Yuan, H. Cullinan, B. Aksoy, Environ. Prog. Sustain. 2007, 26, 349.
- 41 B. Mansoornejad, V. Chambost, P. Stuart, Comput. Chem. Eng. 2010, 34, 1497.
- 42
B. Mansoornejad,
S. Sanaei,
B. Gilani,
D. R. Batsy,
M. Benali,
P. R. Stuart, “ Designing Integrated Biorefineries Using Process Systems Engineering Tools,”
Biorefineries,
Springer,
Cham
2017, p. 201.
10.1007/978-3-319-48288-0_8 Google Scholar
- 43 J. Mustajoki, M. Marttunen, Environ. Modell. Softw. 2017, 93, 78.
- 44 A. Shah, M. J. Darr, R. Anex, Biofuel. Bioprod. Bior. 2012, 6, 45.
- 45 C. Lousteau-Cazalet, A. Barakat, J.-P. Belaud, P. Buche, G. Busset, B. Charnomordic, S. Dervaux, S. Destercke, J. Dibie, C. Sablayrolles, C. Vialle, Comput. Electron. Agr. 2016, 127, 351.
- 46 B. Gilani, P. R. Stuart, Biofuel. Bioprod. Bior. 2015, 9, 677.
- 47 A. Geraili, P. Sharma, J. A. Romagnoli, Comput. Chem. Eng. 2014, 61, 102.
- 48Natural Resources Canada, Benchmarking Energy Use in Canadian Pulp and Paper Mills, M144–121/2006, Natural Resources Canada's Office of Energy Efficiency, Ottawa 2006.
- 49Quad Graphics, Paper Market Update: February 2018, 2018, http://go.qg.com/l/147021/2018-02-08/359161i/147021/79262/qg_paper_market_update_02_2018.pdf.
- 50 M. Björk, J. Rinne, K. Nikunen, A. Kotilainen, V. Korhonen, H. Wallmo, H. Karlsson, “Successful start-up of lignin extraction at Stora Enso Sunila mill,” 6th Nordic Wood Biorefinery Conference, VTT, Helsinki, 20–26 October 2015.
- 51US8486224B2 (2013), invs.: F. Öhman, H. Theliander, P. Tomani, P. Axegard.
- 52US8815052B2 (2014), invs.: F. Öhman, H. Theliander, M. Norgren, P. Tomani, P. Axegård.
- 53 X. Lian, Y. Xue, Z. Zhao, G. Xu, S. Han, H. Yu, Int. J. Energ. Res. 2017, 41, 1798.
- 54 K. Nelson, “Chemical-free pulping with GreenBox++™ nanocellulose for lightweight packaging,” International Conference on nanotechnology for renewable materials, TAPPI, Grenoble, 13–16 June 2016.
- 55 H. Lu, R. Hu, A. Ward, T. E. Amidon, B. Liang, S. Liu, Biomass Bioenerg. 2012, 39, 5.
- 56M. Benali, B. Mansoornejad, O. Ajao, J. Jeaidi, B. Gilani, “Simultaneous Assessment of Technical Performance, Economic Viability and Environmental Footprint of Forest Biorefinery Systems: I-BIOREF Tool,” The 6th Nordic Wood Biorefinery Conference, Helsinki, 20–26 October 2015.
- 57 O. Jolliet, M. Margni, R. Charles, S. Humbert, J. Payet, G. Rebitzer, R. Rosenbaum, Int. J. Life Cycle Ass. 2003, 8, 324.
- 58 G. Belzile, M. Milke, Are Electric Vehicle Subsidies Efficient?, Montreal Economic Institute, Montreal 2017, https://www.iedm.org/71215-are-electric-vehicle-subsidies-efficient.