Functional Coating of NPK Granules with Pyrolysis Oils for Enhanced Slow-Release Performance
Fereshteh Rahmani
Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
Search for more papers by this authorCorresponding Author
Mortaza Gholizadeh
Eurecat, Centre Tecnològic de Catalunya, Waste, Energy and Environmental Impact Unit, Plaça de la Ciència, 2, 08243 Manresa, Spain
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Frederic Clarens
Eurecat, Centre Tecnològic de Catalunya, Waste, Energy and Environmental Impact Unit, Plaça de la Ciència, 2, 08243 Manresa, Spain
E-mail: [email protected]; [email protected]
Search for more papers by this authorFereshteh Rahmani
Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
Search for more papers by this authorCorresponding Author
Mortaza Gholizadeh
Eurecat, Centre Tecnològic de Catalunya, Waste, Energy and Environmental Impact Unit, Plaça de la Ciència, 2, 08243 Manresa, Spain
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Frederic Clarens
Eurecat, Centre Tecnològic de Catalunya, Waste, Energy and Environmental Impact Unit, Plaça de la Ciència, 2, 08243 Manresa, Spain
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
This study focused on developing slow-release fertilizers (SRFs) by coating pyrolysis oil on the fertilizer. The oils used included tire pyrolysis oil (TPO), wheat straw pyrolysis oil (WSPO), poplar wood pyrolysis oil (PWPO), and low-density polyethylene pyrolysis oil (LDPEPO). Coatings were created on fertilizer granules by co-pyrolysis at 200 °C in a fixed-bed pyrolysis reactor under nitrogen gas. The prepared SRFs included TPO-coated fertilizer (TPOCF), WSPO-coated fertilizer (WSPOCF), PWPO-coated fertilizer (PWPOCF), and LDPEPO-coated fertilizer (LDPEPOCF). Carboxylic, carbonyl, and hydroxyl compounds and functional groups in pyrolysis oils played an essential role by forming bonds and complexing with ions in NPK fertilizer. For uniform coverage of NPK fertilizer granules, maintaining a high nitrogen content in the fertilizer structure, and slower release of ions in a distilled water environment, WSPO and poplar wood were suitable.
References
- 1W. Pang, D. Hou, H. Wang, S. Sai, B. Wang, J. Ke, G. Wu, Q. Li, M. T. Holtzapple, J. Braz. Chem. Soc. 2018, 29, 2397–2404.
- 2S. Fertahi, M. Ilsouk, Y. Zeroual, A. Oukarroum, A. Barakat, J. Control. Release 2021, 330, 341–361.
- 3S. Mulyani, A. S. Mawarni, D. G. Ramadhani, J. Chem. Technol. Metall. 2021, 56, 730–737.
- 4 Microbiota and Biofertilizers (Eds: G. H. Dar, R. A. Bhat, M. A. Mehmood, K. R. Hakeem), Vol. 2, Springer, Cham 2021.
10.1007/978-3-030-61010-4 Google Scholar
- 5G. Liu, L. Zotarelli, Y. Li, D. Dinkins, Q. Wang, M. Ozores-Hampton, Controlled-Release and Slow-Release Fertilizers as Nutrient Management Tools, EDIS, University of Florida IFAS Extension, Gainesville, FL 2014, HS1255.
- 6T. M. E. Trenkel, International Fertilizer Association, Paris 2021.
- 7A. T. Ayoub, Nutr. Cycling Agroecosyst. 1999, 55, 117–121.
- 8S. Savci, APCBEE Proc. 2012, 1, 287–292.
- 9A. L. Srivastav, in Agrochemicals Detection, Treatment and Remediation, Elsevier, Amsterdam 2020, 143–159.
10.1016/B978-0-08-103017-2.00006-4 Google Scholar
- 10K. T. Morgan, K. E. Cushman, S. Sato, HortTechnology 2009, 19, 10–12.
- 11Y.-C. Yang, M. Zhang, Y. Li, X.-H. Fan, Y.-Q. Geng, J. Agric. Food Chem. 2012, 60, 11229–11237.
- 12T. C. Madzokere, L. Murombo, H. Chiririwa, Mater. Today Proc. 2021, 45, 3709–3715.
- 13D. Qiao, H. Liu, L. Yu, X. Bao, G. P. Simon, E. Petinakis, L. Chen, Carbohydr. Polym. 2016, 147, 146–154.
- 14B. Beig, M. B. K. Niazi, Z. Jahan, A. Hussain, M. H. Zia, M. T. Mehran, J. Plant Nutr. 2020, 43, 1510–1533.
- 15D. Lawrencia, S. K. Wong, D. Y. S. Low, B. H. Goh, J. K. Goh, U. R. Ruktanonchai, A. Soottitantawat, L. H. Lee, S. Y. Tang, Plants 2021, 10, 238.
- 16M. Mann, J. E. Kruger, F. Andari, J. Mcerlean, J. R. Gascooke, J. A. Smith, M. J. H. Worthington, C. C. C. Mckinley, J. A. Campbell, D. A. Lewis, T. Hasell, M. V. Perkins, J. M. Chalker, Org. Biomol. Chem. 2019, 17, 1929–1936.
- 17B. Azeem, K. KuShaari, Z. B. Man, A. Basit, T. H. Thanh, J. Control. Release 2014, 181, 11–21.
- 18S. Ali, F. Danafar, Life Sci. J. 2015, 12, 33–45.
- 19M. Tomaszewska, A. Jarosiewicz, Desalination 2006, 198, 346–352.
- 20M. Suardi, E. S. B. Rahmayulis, A. Djamaan, J. Agric. Vet. Sci. 2020, 13, 59–64.
- 21S.-Q. Li, Q. Yao, Y. Chi, J.-H. Yan, K.-F. Cen, Ind. Eng. Chem. Res. 2004, 43, 5133–5145.
- 22I. Kassem, E.-H. Ablouh, F.-Z. El Bouchtaoui, Z. Kassab, M. Khouloud, H. Sehaqui, H. Ghalfi, J. Alami, M. El Achaby, Int. J. Biol. Macromol. 2021, 189, 1029–1042.
- 23J. Lu, M. Wu, L. Luo, R. Lu, J. Zhu, Y. Li, Y. Cai, H. Xiang, C. Song, B. Yu, Carbohydr. Polym. 2025, 348, 122834.
- 24R. Liang, M. Liu, L. Wu, React. Funct. Polym. 2007, 67, 769–779.
- 25S. Fertahi, I. Bertrand, M. Ilsouk, A. Oukarroum, M. Amjoud, Y. Zeroual, A. Barakat, Int. J. Biol. Macromol. 2020, 143, 153–162.
- 26M. D. Gumelar, M. Hamzah, A. S. Hidayat, D. A. Saputra, Idvan, Macromol. Symp. 2020, 391, 1900188.
- 27S. Yuan, L. Cheng, Z. Tan, J. Control. Release 2022, 345, 675–684.
- 28A. Sofyane, M. Lahcini, A. El Meziane, M. Khouloud, A. Dahchour, S. Caillol, M. Raihane, J. Am. Oil Chem. Soc. 2020, 97, 751–763.
- 29B. Wei, J. Jiang, C. Gao, L. Zhang, Y. Zhan, S. Jiang, Y. Li, S. Sun, J. Xie, X. Fan, Ind. Crops Prod. 2021, 173, 114096.
- 30A. Demirbas, G. Arin, Energy Sources 2002, 24, 471–482.
- 31P. Roy, G. Dias, Renew Sustain. Energy Rev. 2017, 77, 59–69.
- 32Y. Ayub, J. Ren, J. Clean. Prod. 2024, 459, 142540.
- 33M. R. Islam, H. Haniu, M. R. A. Beg, Fuel 2008, 87, 3112–3122.
- 34T. Wang, R. Zhang, L. Peng, Y. Ai, Q. Lu, J. Anal. Appl. Pyrolysis 2017, 128, 257–260.
- 35T. Hosoya, H. Kawamoto, S. Saka, J. Anal. Appl. Pyrolysis 2007, 80, 118–125.
- 36X. Gu, X. Ma, L. Li, C. Liu, K. Cheng, Z. Li, J. Anal. Appl. Pyrolysis 2013, 102, 16–23.
- 37C. Torri, A. Adamiano, D. Fabbri, C. Lindfors, A. Monti, A. Oasmaa, J. Anal. Appl. Pyrolysis 2010, 88, 175–180.
- 38M. Garcia-Perez, A. Chaala, H. Pakdel, D. Kretschmer, C. Roy, Biomass Bioenergy 2007, 31, 222–242.
- 39A. Mohan, S. Dutta, V. Madav, Fuel 2019, 250, 339–351.
- 40P. T. Williams, S. Besler, Fuel 1995, 74, 1277–1283.
- 41C. Gai, Y. Zhang, W.-T. Chen, P. Zhang, Y. Dong, RSC Adv. 2014, 4, 16958.
- 42T. H. Pedersen, I. F. Grigoras, J. Hoffmann, S. S. Toor, I. M. Daraban, C. U. Jensen, S. B. Iversen, R. B. Madsen, M. Glasius, K. R. Arturi, R. P. Nielsen, E. G. Søgaard, L. A. Rosendahl, Appl. Energy 2016, 162, 1034–1041.
- 43H.-J. Huang, X.-Z. Yuan, B.-T. Li, Y.-D. Xiao, G.-M. Zeng, J. Anal. Appl. Pyrolysis 2014, 109, 176–184.
- 44G. Zattini, C. Leonardi, L. Mazzocchetti, M. Cavazzoni, I. Montanari, C. Tosi, T. Benelli, L. Giorgini, in: Sustainable Design and Manufacturing 2017: Selected Papers on Sustainable Design and Manufacturing, Vol. 4, Springer, Cham 2017, 480–490.
10.1007/978-3-319-57078-5_46 Google Scholar
- 45M. Banar, V. Akyıldız, A. Özkan, Z. Çokaygil, Ö. Onay, Energy Convers. Manag. 2012, 62, 22–30.
- 46F. Cataldo, Prog. Rubber Plast. Recycling Technol. 2006, 22, 243–252.
- 47S. Naik, V. V. Goud, P. K. Rout, A. K. Dalai, Bioresour. Technol. 2010, 101, 7605–7613.
- 48A. Dewangan, D. Pradhan, R. Singh, Fuel 2016, 185, 508–516.
- 49P. T. Williams, E. A. Williams, J. Anal. Appl. Pyrolysis 1999, 51, 107–126.
- 50A. Olad, H. Zebhi, D. Salari, A. Mirmohseni, A. Reyhani Tabar, Mater. Sci. Eng. C 2018, 90, 333–340.
- 51A. Rashidzadeh, A. Olad, Carbohydr. Polym. 2014, 114, 269–278.
- 52B. Dhlamini, H. K. Paumo, L. Katata-Seru, F. R. Kutu, Mater. Res. Express 2020, 7, 095011.
- 53N. Kottegoda, C. Sandaruwan, G. Priyadarshana, A. Siriwardhana, U. A. Rathnayake, D. M. Berugoda Arachchige, A. R. Kumarasinghe, D. Dahanayake, V. Karunaratne, G. A. Amaratunga, ACS Nano 2017, 11, 1214–1221.
- 54Z. Ye, L. Zhang, Q. Huang, Z. Tan, J. Clean. Prod. 2019, 239, 118085.
- 55Y. Jiang, C. Ren, H. Guo, M. Guo, W. Li, Environ. Sci. Technol. 2019, 53, 13841–13849.
- 56J. Chen, S. Tang, F. Yan, Z. Zhang, Water Res. 2020, 171, 115450.
- 57Q. Cui, J. Xu, W. Wang, L. Tan, Y. Cui, T. Wang, G. Li, D. She, J. Zheng, Sci. Total Environ. 2020, 729, 138892.
- 58M. Honkeldieva, H. Li, K. Bukhorov, H. Ahmedov, M. Yulbarsova, IOP Conf. Ser.: Earth Environ. Sci. 2021, 896, 012042.
10.1088/1755-1315/868/1/012042 Google Scholar
- 59I. Kartini, E. T. Lumbantobing, S. Suyanta, S. Sutarno, R. Adnan, Key Eng. Mater. 2020, 840, 156–161.
10.4028/www.scientific.net/KEM.840.156 Google Scholar
- 60K. Lubkowski, A. Smorowska, B. Grzmil, A. Kozłowska, J. Agric. Food Chem. 2015, 63, 2597–2605.
- 61A. Olad, H. Gharekhani, A. Mirmohseni, A. Bybordi, Polym. Bull. 2017, 74, 3353–3377.
- 62H. Lu, W. Zhang, Y. Yang, X. Huang, S. Wang, R. Qiu, Water Res. 2012, 46, 854–862.
- 63A. Samsuri, F. Sadegh-Zadeh, B. Seh-Bardan, Int. J. Environ. Sci. Technol. 2014, 11, 967–976.
- 64X. Tan, Y. Liu, G. Zeng, X. Wang, X. Hu, Y. Gu, Z. Yang, Chemosphere 2015, 125, 70–85.