Impact of Heating Modes on Thermochemical Behavior of Wood Pyrolysis Process
Van Thong Nguyen
School of Mechanical Engineering, Hanoi University of Science and Technology, 01 Dai Co Viet Street, Hai Ba Trung, Hanoi, 11618 Vietnam
Search for more papers by this authorCorresponding Author
Kieu Hiep Le
School of Mechanical Engineering, Hanoi University of Science and Technology, 01 Dai Co Viet Street, Hai Ba Trung, Hanoi, 11618 Vietnam
E-mail: [email protected]
Search for more papers by this authorVan Thong Nguyen
School of Mechanical Engineering, Hanoi University of Science and Technology, 01 Dai Co Viet Street, Hai Ba Trung, Hanoi, 11618 Vietnam
Search for more papers by this authorCorresponding Author
Kieu Hiep Le
School of Mechanical Engineering, Hanoi University of Science and Technology, 01 Dai Co Viet Street, Hai Ba Trung, Hanoi, 11618 Vietnam
E-mail: [email protected]
Search for more papers by this authorAbstract
Pyrolysis is a thermal decomposition process occurring without oxygen, producing liquid oil, gases, and biochar from biomass. The key factor controlling pyrolysis is the thermal energy supplied intensity to the biomass. This study investigates the impact of heating boundary conditions on biomass pyrolysis through a mathematical model incorporating mass and energy conservation, solved numerically using the volume element method. The model is validated against experimental temperature data from a single spherical wood particle under convective heating. It is then applied to a sawdust layer under two conductive heating modes: constant temperature and insulated boundary. Results show that constant temperature heating accelerates pyrolysis threefold and increases tar and gas yields, whereas insulation slows heat transfer, delaying temperature stabilization but producing denser, higher yield char. These findings emphasize the importance of boundary conditions in optimizing biomass conversion.
References
- 1T. Y. A. Fahmy, Y. Fahmy, F. Mobarak, M. El-Sakhawy, R. E. Abou-Zeid, Environ, Dev Sustainability 2018, 22 (1), 17–32. DOI: https://doi.org/10.1007/s10668-018-0200-5
10.1007/s10668-018-0200-5 Google Scholar
- 2C. D. Blasi, Combust. Sci. Technol. 1993, 90 (5), 315–340. DOI: https://doi.org/10.1080/00102209308907620
10.1080/00102209308907620 Google Scholar
- 3A. Demirbaş, Energy Convers. Manage. 2001, 42 (11), 1357–1378. DOI: https://doi.org/10.1016/s0196-8904(00)00137-0
- 4C. Di Blasi, C. Branca, Ind. Eng. Chem. Res. 2001, 40 (23), 5547–5556. DOI: https://doi.org/10.1021/ie000997e
- 5R. El-Araby, Biotechnol Biofuels Bioprod 2024, 17 (1), 1–32. DOI: https://doi.org/10.1186/s13068-024-02571-9
- 6S. E. Ibitoye, R. M. Mahamood, T.-C. Jen, C. Loha, E. T. Akinlabi, J Bioresour Bioprod 2023, 8 (4), 333–360. DOI: https://doi.org/10.1016/j.jobab.2023.09.005
- 7F. Simon, A. Girard, M. Krotki, J. Ordoñez, J. Cleaner Prod. 2021, 282, 124487. DOI: https://doi.org/10.1016/j.jclepro.2020.124487
- 8K. Raveendran, Fuel 1996, 75 (8), 987–998. DOI: https://doi.org/10.1016/0016-2361(96)00030-0
- 9X. Zhang, P. Zhang, X. Yuan, Y. Li, L. Han, Bioresour. Technol. 2020, 296, 122318. DOI: https://doi.org/10.1016/j.biortech.2019.122318
- 10B. Xu, A. Li, AIP Conference Proceedings 2017, 1864 (1), 020116. DOI: https://doi.org/10.1063/1.4992933
10.1063/1.4992933 Google Scholar
- 11F. Cerciello, B. Apicella, C. Russo, L. Cortese, O. Senneca, Fuel 2021, 287, 119604. DOI: https://doi.org/10.1016/j.fuel.2020.119604
- 12J. M. Commandré, H. Lahmidi, S. Salvador, N. Dupassieux, Fuel Process. Technol. 2011, 92 (5), 837–844. DOI: https://doi.org/10.1016/j.fuproc.2010.07.009
- 13J. Shen, X.-S. Wang, M. Garcia-Perez, D. Mourant, M. J. Rhodes, C.-Z. Li, Fuel 2009, 88 (10), 1810–1817. DOI: https://doi.org/10.1016/j.fuel.2009.05.001
- 14Z. Kaczor, Z. Buliński, S. Werle, Renew Energy 2020, 159, 427–443. DOI: https://doi.org/10.1016/j.renene.2020.05.110
- 15C. Xia, L. Cai, H. Zhang, L. Zuo, S. Q. Shi, S. S. Lam, Biofuel Res J 2021, 8 (1), 1296–1315. DOI: 10.18331/brj2021.8.1.2
- 16D. D. Attanayake, F. Sewerin, S. Kulkarni, A. Dernbecher, A. Dieguez-Alonso, B. Van Wachem, Flow Turbul. Combust. 2023, 111 (2), 355–408. DOI: https://doi.org/10.1007/s10494-023-00436-z
- 17J. D. Murillo, J. J. Biernacki, S. Northrup, A. S. Mohammad, Braz. J. Chem. Eng. 2017, 34 (1), 1–18. DOI: https://doi.org/10.1590/0104-6632.20170341s20160086
- 18S. Naidu, H. Pandey, A. Passalacqua, S. Hameed, J. Joshi, A. Sharma, J. Anal. Appl. Pyrolysis 2025, 188, 107030. DOI: https://doi.org/10.1016/j.jaap.2025.107030
- 19D. Meng, T. Wang, J. Xu, X. Chen, Fuel 2019, 254, 115668. DOI: https://doi.org/10.1016/j.fuel.2019.115668
- 20C. Di Blasi, Chem. Eng. Sci. 1996, 51 (7), 1121–1132. DOI: https://doi.org/10.1016/s0009-2509(96)80011-x
- 21R. S. Miller, J. Bellan, Combust. Sci. Technol. 2010, 126 (1–6), 97–137. DOI: https://doi.org/10.1080/00102209708935670
10.1080/00102209708935670 Google Scholar
- 22J. Blondeau, H. Jeanmart, Biomass Bioenergy 2012, 41, 107–121. DOI: https://doi.org/10.1016/j.biombioe.2012.02.016
- 23H. Tolvanen, L. Kokko, R. Raiko, Fuel 2013, 111, 148–156. DOI: https://doi.org/10.1016/j.fuel.2013.04.030
- 24R. Bilbao, J. F. Mastral, J. Ceamanos, M. E. Aldea, J. Anal. Appl. Pyrolysis 1996, 36 (1), 81–97. DOI: https://doi.org/10.1016/0165-2370(95)00918-3
- 25K. M. Bryden, K. W. Ragland, C. J. Rutland, Biomass Bioenergy 2002, 22 (1), 41–53. DOI: https://doi.org/10.1016/s0961-9534(01)00060-5
- 26X. Shi, F. Ronsse, J. G. Pieters, Fuel Process. Technol. 2016, 148, 302–316. DOI: https://doi.org/10.1016/j.fuproc.2016.03.010
- 27M. G. Grønli, M. C. Melaaen, Energy Fuels 2000, 14 (4), 791–800. DOI: https://doi.org/10.1021/ef990176q
- 28E. J. Kansa, H. E. Perlee, R. F. Chaiken, Combust. Flame 1977, 29, 311–324. DOI: https://doi.org/10.1016/0010-2180(77)90121-3
- 29J. Husár, P. Šuhaj, J. Haydary, J. Environ. Chem. Eng. 2021, 9 (4), 105543. DOI: https://doi.org/10.1016/j.jece.2021.105543
- 30W. A. M. K. P. Wickramaarachchi, M. Narayana, Renew Energy 2020, 146, 1153–1165. DOI: https://doi.org/10.1016/j.renene.2019.07.001
- 31J. Soria, K. Zeng, D. Asensio, D. Gauthier, G. Flamant, G. Mazza, Fuel Process. Technol. 2017, 158, 226–237. DOI: https://doi.org/10.1016/j.fuproc.2017.01.006
- 32X. Yu, M. Hassan, R. Ocone, Y. Makkawi, Fuel Process. Technol. 2015, 133, 51–63. DOI: https://doi.org/10.1016/j.fuproc.2015.01.002
- 33A. A. Boateng, P. L. Mtui, Appl. Therm. Eng. 2012, 33–34, 190–198. DOI: https://doi.org/10.1016/j.applthermaleng.2011.09.034
- 34T. Chen, T. Li, J. Sjöblom, H. Ström, Fuel 2021, 303, 121240. DOI: https://doi.org/10.1016/j.fuel.2021.121240
- 35K. Wang, H. Zhang, S. Chu, Z. Zha, Chin. J. Chem. Eng. 2021, 29, 375–382. DOI: https://doi.org/10.1016/j.cjche.2020.09.032
- 36Y. Chen, S. Yang, S. Wang, H. Wang, Renew Energy 2025, 240, 122159. DOI: https://doi.org/10.1016/j.renene.2024.122159
- 37H. Luo, X. Wang, X. Liu, X. Wu, X. Shi, Q. Xiong, J. Anal. Appl. Pyrolysis 2022, 162, 105433. DOI: https://doi.org/10.1016/j.jaap.2022.105433
- 38D. Sangaré, M. Moscosa-Santillan, S. Bostyn, V. Belandria, A. D. C. Martínez, L. V. D. Steene, Chem. Eng. J. 2024, 479, 147791. DOI: https://doi.org/10.1016/j.cej.2023.147791
- 39W. C. Park, A. Atreya, H. R. Baum, Combust. Flame 2010, 157 (3), 481–494. DOI: https://doi.org/10.1016/j.combustflame.2009.10.006
- 40K. H. Le, T. T. H. Tran, E. Tsotsas, A. Kharaghani, Chem. Eng. Technol. 2020, 44 (1), 114–123. DOI: https://doi.org/10.1002/ceat.202000133
- 41K. H. Le, E. Tsotsas, A. Kharaghani, Int. J. Heat Mass Transfer 2018, 124, 1033–1044. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.032