Adaptive Feature Selection and Random Forest Modeling for Green Ammonia Production Process
Ji Zhao
PowerChina Chengdu Engineering Co., Ltd, Chengdu, 610031 China
Search for more papers by this authorZhongbo Hu
PowerChina Chengdu Engineering Co., Ltd, Chengdu, 610031 China
Search for more papers by this authorJie Yang
PowerChina Chengdu Engineering Co., Ltd, Chengdu, 610031 China
Search for more papers by this authorJunxiang Wang
School of Chemical Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorLiang Zan
School of Chemical Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorCorresponding Author
Xu Ji
School of Chemical Engineering, Sichuan University, Chengdu, 610065 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Ph.D. Ge He
School of Chemical Engineering, Sichuan University, Chengdu, 610065 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorJi Zhao
PowerChina Chengdu Engineering Co., Ltd, Chengdu, 610031 China
Search for more papers by this authorZhongbo Hu
PowerChina Chengdu Engineering Co., Ltd, Chengdu, 610031 China
Search for more papers by this authorJie Yang
PowerChina Chengdu Engineering Co., Ltd, Chengdu, 610031 China
Search for more papers by this authorJunxiang Wang
School of Chemical Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorLiang Zan
School of Chemical Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorCorresponding Author
Xu Ji
School of Chemical Engineering, Sichuan University, Chengdu, 610065 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Ph.D. Ge He
School of Chemical Engineering, Sichuan University, Chengdu, 610065 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Green ammonia as a potential clean energy source has attracted significant attention, only contributing to the effective utilization of new energy but also boosting the green transformation of the chemical industry. Effective and accurate modeling is crucial for the green ammonia process. This study innovatively introduces a machine learning method combining the adaptive immune genetic algorithm (AIGA) and random forest (RF) for the optimal modeling of the green ammonia production process. AIGA is responsible for intelligently screening key production parameters, whereas RF constructs a prediction model to predict green ammonia production yields under different feed loads. An example analysis on the Unisim software platform verifies the AIGA-RF model, which maintains high accuracy even under varying production loads, significantly outperforming other algorithm combinations. The method opens new pathways for precise control and efficiency enhancement in green ammonia production.
References
- 1A. Midilli, M. Ay, I. Dincer, M. A. Rosen, Renew. Sustain. Energy Rev. 2005, 9 (3), 255–271. DOI: https://doi.org/10.1016/j.rser.2004.05.003
- 2K. Zeng, D. Zhang, Prog. Energy Combust. Sci. 2010, 36(3), 307–326. DOI: https://doi.org/10.1016/j.pecs.2009.11.002
- 3K. Müller, W. Arlt, Energy Technol. 2013, 1 (9), 501–511. DOI: https://doi.org/10.1002/ente.201300055
- 4V. Negro, M. Noussan, D. Chiaramonti, Energies 2023, 16 (17), 6192. DOI: https://doi.org/10.3390/en16176192
- 5T. H. Ulucan, S. A. Akhade, A. Ambalakatte, T. Autrey, A. Cairns, P. Chen, Y. W. Cho, F. Gallucci, W. Gao, J. B. Grinderslev, K. Grubel, T. R. Jensen, P. E. de Jongh, J. Kothandaraman, K. E. Lamb, Y.-S. Lee, C. Makhloufi, P. Ngene, P. Olivier, C. J. Webb, B. Wegman, B. C. Wood, C. Weidenthaler, Prog. Energy 2023, 5 (1), 012004. DOI: https://doi.org/10.1088/2516-1083/acac5c
- 6J. Humphreys, R. Lan, S. Tao, Adv. Energy Sust. Res. 2021, 2 (1), 2000043. DOI: https://doi.org/10.1002/aesr.202000043
- 7S. Giddey, S. P. S. Badwal, A. Kulkarni, Int. J. Hydrogen Energy 2013, 38 (34), 14576–14594. DOI: https://doi.org/10.1016/j.ijhydene.2013.09.054
- 8C. Park, I. Hwang, H. Jang, B. Jeong, S. Ha, J. Kim, J. Jee, Appl. Sci. 2024, 14 (23), 11196. DOI: https://doi.org/10.3390/app142311196
- 9H. Nami, P. V. Hendriksen, H. L. Frandsen, Renew. Sustain. Energy Rev. 2024, 199, 114517. DOI: https://doi.org/10.1016/j.rser.2024.114517
- 10E. C. Blanco, A. Sánchez, M. Martín, P. Vega, Renew. Sustain. Energy Rev. 2023, 175, 113195. DOI: https://doi.org/10.1016/j.rser.2023.113195
- 11V. J. Reddy, N. P. Hariram, R. Maity, M. F. Ghazali, S. Kumarasamy, World Electr. Veh. j. 2023, 14 (12), 349. DOI: https://doi.org/10.3390/wevj14120349
10.3390/wevj14120349 Google Scholar
- 12D. Ye, S. C. E. Tsang, Nat. Synth. 2023, 2 (7), 612–623. DOI: https://doi.org/10.1038/s44160-023-00321-7
- 13Y. Hua, W. Chen, H. Jin, Q. Li, X. Ji, Y. Dai, Process Saf. Environ. Prot. 2024, 191, 52–64. DOI: https://doi.org/10.1016/j.psep.2024.08.115
- 14Z. Deng, L. Zhang, B. Miao, Q. Liu, Z. Pan, W. Zhang, O. L. Ding, S. H. Chan, Energy Convers. Manage. 2024, 311, 118429. DOI: https://doi.org/10.1016/j.enconman.2024.118429
- 15G. He, Y. Dang, L. Zhou, Y. Dai, Y. Que, X. Ji, Comput. Chem. Eng. 2020, 141, 106967. DOI: https://doi.org/10.1016/j.compchemeng.2020.106967
- 16X. Zhang, G. Li, Z. Zhou, L. Nie, Y. Dai, X. Ji, G. He, Ind. Eng. Chem. Res. 2024, 63 (28), 12547–12560. DOI: https://doi.org/10.1021/acs.iecr.4c01118
- 17K. F. Man, K. S. Tang, S. Kwong, IEEE Trans. Ind. Electron. 1996, 43 (5), 519–534. DOI: https://doi.org/10.1109/41.538609
- 18D. Yongshou, L. Yuanyuan, W. Lei, W. Junling, Z. Deling, J. Syst. Eng. Electron. 2007, 18 (3), 655–660. DOI: https://doi.org/10.1016/S1004-4132(07)60144-3
10.1016/S1004-4132(07)60144-3 Google Scholar
- 19X. Chen, H. Ishwaran, Genomics 2012, 99 (6), 323–329. DOI: https://doi.org/10.1016/j.ygeno.2012.04.003
- 20J. Li, Q. Xiong, X. Mu, L. Li, ChemSusChem 2024, 17 (15), e202301775. DOI: https://doi.org/10.1002/cssc.202301775
- 21H. Zhou, Z. Chen, W. Meng, S. Yang, J. Environ. Chem. Eng. 2024, 12 (3), 112892. DOI: https://doi.org/10.1016/j.jece.2024.112892
- 22Z. Sun, Y. Zhang, H. Huang, Y. Luo, L. Lin, L. Jiang, Energy Convers. Manage. 2024, 300, 117893. DOI: https://doi.org/10.1016/j.enconman.2023.117893
- 23G. Qing, R. Ghazfar, S. T. Jackowski, F. Habibzadeh, M. M. Ashtiani, C. P. Chen, M. R. Smith, T. W. Hamann, Chem. Rev. 2020, 120 (12), 5437–5516. DOI: https://doi.org/10.1021/acs.chemrev.9b00659
- 24N. Erfani, L. Baharudin, M. Watson, Chem. Eng. Process.: Process Intensif. 2024, 204, 109962. DOI: https://doi.org/10.1016/j.cep.2024.109962
- 25S. A. N. Alexandropoulos, S. B. Kotsiantis, M. N. Vrahatis, Knowl. Eng. Rev. 2019, 34, e1. DOI: https://doi.org/10.1017/S026988891800036X
- 26J. Zhu, Z. Ge, Z. Song, F. Gao, Annu. Rev. Control 2018, 46, 107–133. DOI: https://doi.org/10.1016/j.arcontrol.2018.09.003
- 27B. C. Xu, Y. X. Wang, L. K. Yuan, C. N. Xu, Appl. Intell. 2023, 53 (2), 1619–1639. DOI: https://doi.org/10.1007/s10489-022-03515-2
- 28J. Zhang, M. Zhang, Z. Feng, L. Ruifang, C. Lu, Y. Dai, L. Dong, Process Saf. Environ. Prot. 2023, 175, 129–149. DOI: https://doi.org/10.1016/j.psep.2023.05.025
- 29S. Mirzaei, J. L. Kang, K. Y. Chu, J. Taiwan Inst. Chem. Eng. 2022, 130, 104028. DOI: https://doi.org/10.1016/j.jtice.2021.08.016
- 30Y. M. Han, N. Ding, Z. Q. Geng, Z. Wang, C. Chu, J. Process Control 2020, 92, 161–168. DOI: https://doi.org/10.1016/j.jprocont.2020.06.005
- 31P. Probst, M. N. Wright, A. L. Boulesteix, Wiley Interdiscip. Rev.: Data Min. Knowl. Discov. 2019, 9 (3), e1301. DOI: https://doi.org/10.1002/widm.1301
- 32J. Bergstra, Y. Bengio, J. Mach. Learn Res. 2012, 13, 281–305.
- 33B. Shahriari, K. Swersky, Z. Y. Wang, R. P. Adams, N. de Freitas, Proc. IEEE 2016, 104 (1), 148–175. DOI: https://doi.org/10.1109/JPROC.2015.2494218
- 34S. Yang, M. Yang, S. Wang, K. Huang, Cluster Comput. 2016, 19 (3), 1359–1372. DOI: https://doi.org/10.1007/s10586-016-0596-3
- 35Y. S. Dai, Y. Y. Li, L. Wei, J. L. Wang, D. L. Zheng, J. Syst. Eng. Electron. 2007, 18 (3), 655–660. DOI: https://doi.org/10.1016/S1004-4132(07)60144-3
- 36A. Lipowski, D. Lipowska, Physica A Stat. Mech. Appl. 2012, 391 (6), 2193–2196. DOI: https://doi.org/10.1016/j.physa.2011.12.004
- 37S. Katoch, S. S. Chauhan, V. Kumar, Multimed. Tools Appl. 2021, 80 (5), 8091–8126. DOI: https://doi.org/10.1007/s11042-020-10139-6
- 38T. O. Hodson, Geosci. Model. Dev. 2022, 15 (14), 5481–5487. DOI: https://doi.org/10.5194/gmd-15-5481-2022
- 39V. Svetnik, A. Liaw, C. Tong, J. C. Culberson, R. P. Sheridan, B. P. Feuston, J. Chem. Inf. Comput. Sci. 2003, 43 (6), 1947–1958. DOI: https://doi.org/10.1021/ci034160g