Production of Fine Crystalline Particles Using Vapor–Aeration Method in Anti-Solvent Crystallization
Corresponding Author
Dr. Shuntaro Amari
Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo, 184-8588 Japan
E-mail: [email protected] and [email protected]
Search for more papers by this authorHironori Abe
Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo, 184-8588 Japan
Search for more papers by this authorDr. Sayaka Abe
Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo, 184-8588 Japan
Search for more papers by this authorDr. Shoji Kudo
Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo, 184-8588 Japan
Present address: Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1, Tsudanuma-cho, Narashino-shi, Chiba 275-0016, Japan.
Search for more papers by this authorCorresponding Author
Dr. Hiroshi Takiyama
Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo, 184-8588 Japan
E-mail: [email protected] and [email protected]
Search for more papers by this authorCorresponding Author
Dr. Shuntaro Amari
Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo, 184-8588 Japan
E-mail: [email protected] and [email protected]
Search for more papers by this authorHironori Abe
Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo, 184-8588 Japan
Search for more papers by this authorDr. Sayaka Abe
Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo, 184-8588 Japan
Search for more papers by this authorDr. Shoji Kudo
Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo, 184-8588 Japan
Present address: Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1, Tsudanuma-cho, Narashino-shi, Chiba 275-0016, Japan.
Search for more papers by this authorCorresponding Author
Dr. Hiroshi Takiyama
Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo, 184-8588 Japan
E-mail: [email protected] and [email protected]
Search for more papers by this authorAbstract
Fine crystalline particles with narrow size distribution are desired in pharmaceutical manufacturing, considering the increased bioavailability. This study proposed a vapor–aeration (V–A) method to produce fine crystalline particles with narrow size distribution due to the overcoming the conventional trade-off between the supersaturation condition of nucleation and crystal growth. Thus, the effects of V–A method on the crystallization and the characteristics of crystalline particles were investigated. Experimental results showed that the V–A method could induce nucleation effectively even under low supersaturation conditions and provide fine crystalline particles with improved size distribution due to its nucleation enhancement.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1S. Z. Jia, Z. G. Gao, N. N. Tian, Z. Q. Li, J. B. Gong, J. K. Wang, S. Rohani, Chem. Eng. Res. Des. 2021, 166, 268–280. DOI: https://doi.org/10.1016/j.cherd.2020.12.012
- 2D. J. Zhang, S. J. Xu, S. C. Du, J. K. Wang, J. B. Gong, Engineering 2017, 3 (3), 354–364. DOI: https://doi.org/10.1016/J.Eng.2017.03.023
- 3Y. M. Ma, S. G. Wu, E. G. J. Macaringue, T. Zhang, J. B. Gong, J. K. Wang, Org. Process Res. Dev. 2020, 24 (10), 1785–1801. DOI: https://doi.org/10.1021/acs.oprd.9b00362
- 4B. Wood, K. P. Girard, C. S. Polster, D. M. Croker, Org. Process Res. Dev. 2019, 23 (2), 122–144. DOI: https://doi.org/10.1021/acs.oprd.8b00319
- 5K. J. Carpenter, W. M. L. Wood, Adv. Powder Technol. 2004, 15 (6), 657–672. DOI: https://doi.org/10.1163/1568552042456205
- 6A. J. Alvarez, A. S. Myerson, Cryst. Growth Des. 2010, 10 (5), 2219–2228. DOI: https://doi.org/10.1021/cg901496s
- 7B. Y. Shekunov, P. York, J. Cryst. Growth 2000, 211 (1–4), 122–136. DOI: https://doi.org/10.1016/S0022-0248(99)00819-2
- 8S. Mostafa Nowee, A. Abbas, J. A. Romagnoli, Chem. Eng. Sci. 2008, 63 (22), 5457–5467. DOI: https://doi.org/10.1016/j.ces.2008.08.003
- 9A. Kitayama, K. Kadota, Y. Tozuka, A. Shimosaka, M. Yoshida, Y. Shirakawa, CrystEngComm 2020, 22 (31), 5182–5190. DOI: https://doi.org/10.1039/d0ce00542h
- 10R. Kumar, A. K. Thakur, N. Banerjee, A. Kumar, G. K. Gaurav, R. K. Arya, Drug Deliv. Transl. Res. 2023, 13, 400–418. DOI: https://doi.org/10.1007/s13346-022-01219-1
- 11X. Y. Woo, R. B. H. Tan, P. S. Chow, R. D. Braatz, Cryst. Growth Des. 2006, 6 (6), 1291–1303. DOI: https://doi.org/10.1021/cg0503090
- 12S. Amari, C. Sugawara, S. Kudo, H. Takiyama, ACS Omega 2022, 7 (3), 2989–2995. DOI: https://doi.org/10.1021/acsomega.1c06015
- 13H. Takiyama, Adv. Powder Technol. 2012, 23 (3), 273–278. DOI: https://doi.org/10.1016/j.apt.2012.04.009
- 14Z. Q. Yu, J. W. Chew, P. S. Chow, R. B. H. Tan, Chem. Eng. Res. Des. 2007, 85 (A7), 893–905. DOI: https://doi.org/10.1205/cherd06234
- 15H. Takiyama, T. Minamisono, Y. Osada, M. Matsuoka, Chem. Eng. Res. Des. 2010, 88 (9a), 1242–1247. DOI: https://doi.org/10.1016/j.cherd.2009.09.011
- 16T. Minamisono, H. Takiyama, J. Cryst. Growth 2013, 362, 135–139. DOI: https://doi.org/10.1016/j.jcrysgro.2011.11.091
- 17Z. Q. Yu, R. B. H. Tan, P. S. Chow, J. Cryst. Growth 2005, 279 (3-4), 477–488. DOI: https://doi.org/10.1016/j.jcrysgro.2005.02.050
- 18S. Z. Jia, P. Yang, Z. G. Gao, Z. H. Li, C. Fang, J. B. Gong, CrystEngComm 2022, 24 (17), 3122–3135. DOI: https://doi.org/10.1039/d2ce00059h
- 19L. Keshavarz, M. Pishnamazi, U. B. Rao Khandavilli, S. Shirazian, M. N. Collins, G. M. Walker, P. J. Frawley, Arab. J. Chem. 2021, 14 (4), 103089. DOI: https://doi.org/10.1016/j.arabjc.2021.103089
- 20F. Kesisoglou, S. Panmai, Y. H. Wu, Adv. Drug. Deliv. Rev. 2007, 59 (7), 631–644. DOI: https://doi.org/10.1016/j.addr.2007.05.003
- 21M. R. Abu Bakar, Z. K. Nagy, A. N. Saleemi, C. D. Rielly, Cryst. Growth Des. 2009, 9 (3), 1378–1384. DOI: https://doi.org/10.1021/cg800595v
- 22J. M. Hacherl, E. L. Paul, H. M. Buettner, AIChE J. 2003, 49 (9), 2352–2362. DOI: https://doi.org/10.1002/aic.690490911
- 23T. Kleetz, F. Funke, A. Sunderhaus, G. Schembecker, K. Wohlgemuth, Cryst. Growth Des. 2016, 16 (12), 6797–6803. DOI: https://doi.org/10.1021/acs.cgd.6b00895
- 24T. Kleetz, G. Pätzold, G. Schembecker, K. Wohlgemuth, Cryst. Growth Des. 2017, 17 (3), 1028–1035. DOI: https://doi.org/10.1021/acs.cgd.6b01280
- 25K. Atsukawa, S. Amari, H. Takiyama, J. Ind. Eng. Chem. 2022, 106, 69–73. DOI: https://doi.org/10.1016/j.jiec.2021.10.023
- 26L. M. Terdenge, J. A. Kossuch, G. Schembecker, K. Wohlgemuth, Powder Technol. 2017, 320, 386–396. DOI: https://doi.org/10.1016/j.powtec.2017.07.044
- 27W. Q. Tian, C. Rielly, H. Y. Yang, CrystEngComm 2021, 23 (46), 8159–8168. DOI: https://doi.org/10.1039/d1ce01034d
- 28C. Fang, W. W. Tang, S. G. Wu, J. K. Wang, Z. G. Gao, J. B. Gong, Ultrason. Sonochem. 2020, 68, 105227. DOI: https://doi.org/10.1016/j.ultsonch.2020.105227
- 29U. N. Hatkar, P. R. Gogate, Chem. Eng. Process.: Process Intensif. 2012, 57–58, 16–24. DOI: https://doi.org/10.1016/j.cep.2012.04.005
10.1016/j.cep.2012.04.005 Google Scholar
- 30E. Kougoulos, I. Marziano, P. R. Miller, J. Cryst. Growth 2010, 312 (23), 3509–3520. DOI: https://doi.org/10.1016/j.jcrysgro.2010.09.022
- 31K. Renuka Devi, A. Raja, K. Srinivasan, Ultrason. Sonochem. 2015, 24, 107–113. DOI: https://doi.org/10.1016/j.ultsonch.2014.11.006
- 32S. Amari, A. Nakamura, H. Takiyama, Ind. Eng. Chem. Res. 2022, 61 (28), 10117–10123. DOI: https://doi.org/10.1021/acs.iecr.2c01358