Entropy Analysis of Al2O3–TiO2/H2O Hybrid Nanofluid Flow over an Exponential Stretching Sheet with Thermal Dissipation and Chemical Reactions
Corresponding Author
B. Venkateswarlu
School of Mechanical Engineering, Yeungnam University, Gyeongsan-si, 38541 Republic of Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorD. Chenna Kesavaiah
Department of Basic Sciences & Humanities, Vignan's Institute of Management and Technology for Women, Kondapur, Gahatkeswar, Telangana, 501301 India
Search for more papers by this authorCorresponding Author
Sang Woo Joo
School of Mechanical Engineering, Yeungnam University, Gyeongsan-si, 38541 Republic of Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorAhmed Sayed M. Metwally
Department of Mathematics, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
Search for more papers by this authorCorresponding Author
B. Venkateswarlu
School of Mechanical Engineering, Yeungnam University, Gyeongsan-si, 38541 Republic of Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorD. Chenna Kesavaiah
Department of Basic Sciences & Humanities, Vignan's Institute of Management and Technology for Women, Kondapur, Gahatkeswar, Telangana, 501301 India
Search for more papers by this authorCorresponding Author
Sang Woo Joo
School of Mechanical Engineering, Yeungnam University, Gyeongsan-si, 38541 Republic of Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorAhmed Sayed M. Metwally
Department of Mathematics, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
Search for more papers by this authorAbstract
This research explores entropy generation in the two-dimensional flow of MHD (Al2O3–TiO2/H2O) hybrid nanofluid over an exponentially stretching sheet within a porous medium. The study incorporates chemical reaction, thermal radiation, and Joule heating into the concentration and energy equations, which are thoroughly analyzed. The governing PDEs are transformed into nonlinear ODEs using similarity solutions and solved numerically with the bvp4c solver in MATLAB. The study examines the effects on flow profiles and key engineering parameters. Results show that increasing Brinkman and Reynolds numbers produces contrasting trends in entropy generation and the Bejan number. A stronger magnetic field and porous medium increase skin friction by 2.18 % in hybrid nanofluids. An enhanced Eckert number combined with radiation raises heat transfer by 5 % compared to conventional TiO2/H2O. The mass transfer rate increases by over 1.5 % with a rising reaction factor in Al2O3–TiO2/H2O.
Open Research
Data Availability Statement
The research data will be made available on request.
References
- 1S. U. S. Choi, J. A. Eastman, Enhancing Thermal Conductivity of Fluids with Nanoparticles, Developments and Applications of Non-Newtonian Flows, In: D. A. Siginer, H. P. Wang, Eds., American Society of Mechanical Engineers, New York, 1995, pp. 99–105.
- 2J. Patel, A. Soni, D. P. Barai, B. A. Bhanvase, Appl. Therm. Eng. 2023, 219, 119428. DOI: https://doi.org/10.1016/J.APPLTHERMALENG.2022.119428
- 3A. Siricharoenpanich, S. Wiriyasart, A. Srichat, P. Naphon, Case Stud. Therm. Eng. 2020, 20, 100641. DOI: https://doi.org/10.1016/J.CSITE.2020.100641
- 4A. Bhat, S. Budholiya, S. A. Raj, M. T. H. Sultan, D. Hui, A. U. M. Shah, S. N. A. Safri, Nanotechnol. Rev. 2021, 10 (1), 237–253. DOI: https://doi.org/10.1515/NTREV-2021-0018/ASSET/GRAPHIC/J_NTREV-2021-0018_FIG_008.JPG
- 5L. Ben Said, L. Kolsi, K. Ghachem, M. Almeshaal, C. Maatki, Appl. Nanosci. 2022, 13 (6), 4247–4278. DOI: https://doi.org/10.1007/S13204-021-02140-8
- 6L. Sun, L. Yang, N. Zhao, J. Song, X. Li, X. Wu, Powder Technol. 2022, 411, 117932. DOI: https://doi.org/10.1016/J.POWTEC.2022.117932
- 7M. Sheikhpour, M. Arabi, A. Kasaeian, A. Rokn Rabei, Z. Taherian, Nanotechnol. Sci. Appl. 2020, 13, 47–59. DOI: https://doi.org/10.2147/NSA.S260374
- 8B. Venkateswarlu, S. Chavan, S. W. Joo, S. Chul Kim, J. Mol. Liq. 2023, 391, 123257. DOI: https://doi.org/10.1016/J.MOLLIQ.2023.123257
- 9B. Venkateswarlu, S. C. Kim, S. W. Joo, S. Chavan, J. Therm. Sci. Eng. Appl. 2024, 16 (3). 031003. DOI: https://doi.org/10.1115/1.4064232/1182998
- 10U. Farooq, T. Liu, A. Jan, Bionanoscience 2025, 15 (1), 1–16. DOI: https://doi.org/10.1007/S12668-024-01763-9/METRICS
- 11M. K. Muhamad Azim, A. Arifutzzaman, R. Saidur, M. U. Khandaker, D. A. Bradley, J. Mol. Liq. 2022, 360, 119443. DOI: https://doi.org/10.1016/J.MOLLIQ.2022.119443
- 12Q. Xiong, S. Altnji, T. Tayebi, M. Izadi, A. Hajjar, B. Sundén, L. K. B. Li, Sustain. Energy Technol. Assess. 2021, 47, 101341. DOI: https://doi.org/10.1016/J.SETA.2021.101341
- 13K. Dhif, F. Mebarek-Oudina, S. Chouf, H. Vaidya, A. J. Chamkha, J. Nanofluids 2021, 10 (4), 616–626. DOI: https://doi.org/10.1166/JON.2021.1807
- 14Z. A. Alrowaili, M. Ezzeldien, N. M. Shaaalan, E. Hussein, M. A. Sharafeldin, J. Energy Storage 2022, 50, 104675. DOI: https://doi.org/10.1016/J.EST.2022.104675
- 15H. Adun, I. Wole-Osho, E. C. Okonkwo, D. Kavaz, M. Dagbasi, J. Mol. Liq. 2021, 340, 116890. DOI: https://doi.org/10.1016/J.MOLLIQ.2021.116890
- 16R. K. Mande, S. Rama Raju, K. P.V. K. Varma, Mater. Res. Innov. 2024, 28 (2), 83–93. DOI: https://doi.org/10.1080/14328917.2023.2230016
- 17M. Amjad, M. N. Khan, K. Ahmed, I. Ahmed, T. Akbar, S. M. Eldin, Case Stud. Therm. Eng. 2023, 45, 102900. DOI: https://doi.org/10.1016/J.CSITE.2023.102900
- 18S. V. Padma, M. P. Mallesh, M. Sanjalee, A. J. Chamkha, J. Therm. Anal. Calorim. 2024, 149 (6), 2749–2763. DOI: https://doi.org/10.1007/S10973-023-12858-Y
- 19S. A. Lone, M. D. Shamshuddin, S. Shahab, S. Iftikhar, A. Saeed, A. M. Galal, J. Magn. Magn. Mater. 2023, 580, 170959. DOI: https://doi.org/10.1016/J.JMMM.2023.170959
- 20M. D. Shamshuddin, A. Saeed, S. R. Mishra, R. Katta, M. R. Eid, Int. J. Numer. Methods Heat Fluid Flow 2024, 34 (1), 31–53. DOI: https://doi.org/10.1108/HFF-03-2023-0128/FULL/PDF
- 21D. Harish Babu, K. K. Naidu, S. Deo, P. V. Satya Narayana, Int. J. Model. Simul. 2023, 43 (3), 310–324. DOI: https://doi.org/10.1080/02286203.2022.2079109
10.1080/02286203.2022.2079109 Google Scholar
- 22T. S. Neethu, A. S. Sabu, A. Mathew, A. Wakif, S. Areekara, Int. Commun. Heat Mass Transfer 2022, 135, 106115. DOI: https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2022.106115
- 23N. Khan, N. Abbas, A. Shaheen, W. Shatanawi, Int. J. Mod. Phys. B. 2024, 39 (3), 2550033. DOI: https://doi.org/10.1142/S021797922550033X
- 24A. Rehman, A. Saeed, M. Bilal, Waves Random Complex Media 2022, 36, 1–15. DOI: https://doi.org/10.1080/17455030.2022.2077472
- 25V. K. Patel, J. U. Pandya, M. R. Patel, J. Magn. Magn. Mater. 2023, 572, 170591. DOI: https://doi.org/10.1016/J.JMMM.2023.170591
- 26K. Ramesh, K. K. Asogwa, T. Oreyeni, M. G. Reddy, A. Verma, Biomass Convers. Biorefinery 2023, 14, 1–10. DOI: https://doi.org/10.1007/S13399-023-04033-Y/METRICS
- 27M. D. Shamshuddin, T. M. Agbaje, K. K. Asogwa, K. Ramesh, Numer. Heat Transf. Part B Fundam. 2023, 86 (3), 537–561. DOI: https://doi.org/10.1080/10407790.2023.2289503
- 28B. Venkateswarlu, P. V. Satya Narayana, Heat Transfer 2021, 50 (1), 432–449. DOI: https://doi.org/10.1002/HTJ.21884
10.1002/htj.21884 Google Scholar
- 29N. A. Zainal, R. Nazar, K. Naganthran, I. Pop, Neural. Comput. Appl. 2021, 33 (17), 11285–11295. DOI: https://doi.org/10.1007/S00521-020-05645-5/METRICS
- 30R. Razzaq, U. Farooq, Numer. Heat Transfer Part B Fundam. 2024, 86 (5), 1398–1413. DOI: https://doi.org/10.1080/10407790.2024.2312958
- 31O. Prakash, P. S. Rao, R. P. Sharma, S. R. Mishra, Pramana–J. Phys. 2023, 97 (2), 1–9. DOI: https://doi.org/10.1007/S12043-023-02533-0/METRICS
- 32B. Venkateswarlu, A. S. Falmari, S. W. Joo, I. M. Chandarki, Numer. Heat Transfer Part B Fundam. 2025, 85 (12), 1–22. DOI: https://doi.org/10.1080/10407790.2024.2392008
- 33K. Swain, F. Mebarek-Oudina, S. M. Abo-Dahab, J. Therm. Anal. Calorim. 2022, 147 (2), 1561–1570. DOI: https://doi.org/10.1007/S10973-020-10432-4/METRICS
- 34A. Manigandan, P. V. S. Narayana, Asia-Pac. J. Chem. Eng. 2024, 19 (4), e3070. DOI: https://doi.org/10.1002/APJ.3070
- 35B. Venkateswarlu, S. Chavan, P. V. S. Narayana, S. W. Joo, Asia-Pac. J. Chem. Eng. 2024, 19 (1), e2985. DOI: https://doi.org/10.1002/APJ.2985
- 36A. Mishra, Numer. Heat Transfer Part A Appl. 2024, 86 (12), 1–30. DOI: https://doi.org/10.1080/10407782.2024.2363496
- 37E. A. Algehyne, F. M. Alamrani, A. Khan, K. A. Khan, S. A. Lone, A. Saeed, Colloid. Polym. Sci. 2024, 302 (4), 503–516. DOI: https://doi.org/10.1007/S00396-023-05214-X/METRICS
- 38M. Rooman, M. A. Jan, Z. Shah, G. Alhawael, S. Iqbal, Waves Random Complex Media 2022, 1–16. DOI: https://doi.org/10.1080/17455030.2022.2102268
- 39B. Venkateswarlu, P. V. S. Narayana, S. W. Joo, Asia-Pac. J. Chem. Eng. 2024, 19 (1), e3002. DOI: https://doi.org/10.1002/APJ.3002
- 40M. K. Nayak, F. Mabood, A. S. Dogonchi, K. M. Ramadan, I. Tlili, W. A. Khan, Waves Random Complex Media 2022, 35 (1), 1–22. DOI: https://doi.org/10.1080/17455030.2022.2032474
- 41M. Subhani, N. Ullah, S. Nadeem, A. Aziz, H. Sardar, Int. J. Mod. Phys. B 2023, 38 (21), 2450285. DOI: https://doi.org/10.1142/S0217979224502850
- 42R. Agrawal, P. Kaswan, Int. J. Numer. Methods Heat Fluid Flow 2023, 33 (1), 65–95. DOI: https://doi.org/10.1108/HFF-01-2022-0005/FULL/PDF
- 43A. T. Akinshilo, F. Mabood, I. A. Badruddin, Waves Random Complex Media 2022, 1–23. DOI: https://doi.org/10.1080/17455030.2022.2117432
- 44S. Hussain, K. Rasheed, A. Ali, N. Vrinceanu, A. Alshehri, Z. Shah, Sci. Rep. 2022, 12 (1), 1–17, DOI: https://doi.org/10.1038/s41598-022-22970-y
- 45B. Venkateswarlu, S. W. Joo, N. Nagendra, A. S. M. Metwally, Asia-Pac. J. Chem. Eng. 2025, 20 (1), e3154. DOI: https://doi.org/10.1002/APJ.3154