Ethanol Antisolvent Effects on Solid–Liquid Equilibrium and Nucleation of Ammonium Magnesium Sulfate Hexahydrate
Corresponding Author
Tam Minh Le
Department of Chemical Technology, Ho Chi Minh City University of Technology and Education, 1 Vo Van Ngan, Thu Duc, Ho Chi Minh City, 700000 Vietnam
E-mail: [email protected]
Search for more papers by this authorDuc Hong Ta
Department of Chemical Process Equipment, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi, 10000 Vietnam
Search for more papers by this authorBinh Phuc Pham
Department of Chemical Technology, Ho Chi Minh City University of Technology and Education, 1 Vo Van Ngan, Thu Duc, Ho Chi Minh City, 700000 Vietnam
Search for more papers by this authorSon Loc Hua
Department of Chemical Technology, Ho Chi Minh City University of Technology and Education, 1 Vo Van Ngan, Thu Duc, Ho Chi Minh City, 700000 Vietnam
Search for more papers by this authorCorresponding Author
Tam Minh Le
Department of Chemical Technology, Ho Chi Minh City University of Technology and Education, 1 Vo Van Ngan, Thu Duc, Ho Chi Minh City, 700000 Vietnam
E-mail: [email protected]
Search for more papers by this authorDuc Hong Ta
Department of Chemical Process Equipment, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi, 10000 Vietnam
Search for more papers by this authorBinh Phuc Pham
Department of Chemical Technology, Ho Chi Minh City University of Technology and Education, 1 Vo Van Ngan, Thu Duc, Ho Chi Minh City, 700000 Vietnam
Search for more papers by this authorSon Loc Hua
Department of Chemical Technology, Ho Chi Minh City University of Technology and Education, 1 Vo Van Ngan, Thu Duc, Ho Chi Minh City, 700000 Vietnam
Search for more papers by this authorAbstract
The characterization of a double salt synthesized from aqueous solutions of ammonium sulfate and magnesium sulfate is reported. Thermal analysis indicates that the resulting crystals incorporate six water molecules, yielding a compound with the composition (NH4)2Mg(SO4)2·6H2O. X-ray diffraction confirms the structural stability of the crystals in both water and ethanol–water mixtures. Two key aspects were investigated, including the thermodynamics of the solid–liquid equilibrium (SLE) and the kinetics of primary nucleation. SLE measurements reveal that ethanol acts as an antisolvent. The dissolution process is endothermic, with the enthalpy of dissolution increasing with ethanol content. The enthalpy of dissolution in a solvent containing 10 % (w/w) of ethanol is +21.92 kJ mol−1, compared to +17.14 kJ mol−1 in water. Furthermore, the nucleation process follows second-order kinetics, with the nucleation rate constant exhibiting a strong dependence on solvent composition.
Supporting Information
Filename | Description |
---|---|
ceat70040-sup-0001-SuppMat.docx217.7 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Kenisarin, K. Mahkamov, Sol. Energy Mater. Sol. Cells 2016, 145, 255–286.
- 2R. J. Clark, A. Mehrabadi, M. Farid, J. Energy Storage 2020, 27, 101145.
- 3H. Yang, C. Wang, L. Tong, S. Yin, L. Wang, Y. Ding, Energies 2023, 16, 2875.
- 4H. Ait Ousaleh, S. Sair, A. Zaki, A. Faik, J. Mirena Igartua, A. El Bouari, Sol. Energy 2020, 201, 846–856.
- 5W. Hua, H. Yan, X. Zhang, X. Xu, L. Zhang, Y. Shi, J. Energy Storage 2022, 56, 106158.
- 6J. G. O. Neto, J. R. Viana, J. B. O. Lopes, A. D. S. G. Lima, M. L. Sousa, M. R. Lage, S. R. Stoyanov, R. Lang, A. O. Santos, J. Mol. Model. 2022, 28, 341.
- 7J. Smith, P. Weinberger, A. Werner, J. Energy Storage 2024, 78, 110003. DOI: https://doi.org/10.1016/j.est.2023.110003
- 8J. B. De O. Lopes, J. G. Oliveira Neto, A. O. Dos Santos, R. Lang, J. Energy Storage 2024, 98, 113114.
- 9W. Grzebisz, W. Zielewicz, K. Przygocka-Cyna, Agronomy 2023, 13, 66.
- 10I. Zewdie, Y. Reta, Direct Res. J. Agric. Food Sci. 2021, 9 (1), 7–11.
- 11T. M. Le, P. T. H. Pham, N. D. Hoang, J. Chem. Eng. Res. Updates 2022, 9, 30–38.
10.15377/2409-983X.2022.09.4 Google Scholar
- 12D. Fontana, F. Forte, M. Pietrantonio, S. Pucciarmati, C. Marcoaldi, Environ. Dev. Sustainability 2023, 25, 13733–13754.
- 13D. Zhang, Y. Li, J. Cao, Desalination 2023, 559,116629.
- 14J. Nývlt, The Kinetics of Industrial Crystallization, Elsevier, Amsterdam 1985.
- 15A. K. Cheetham, G. Kieslich, H. H.-M. Yeung, Acc. Chem. Res. 2018, 51 (3), 659–667.
- 16W. A. Tiller, J. Cryst. Growth 1986, 76 (3), 607–617.
- 17J. Ulrich, C. Strege, J. Cryst. Growth 2002, 237–239, 2130–2135.
- 18A. Lewis, M. Seckler, H. Kramer, G. van Rosmalen, Industrial Crystallization: Fundamentals and Applications, Cambridge University Press, Cambridge 2015.
10.1017/CBO9781107280427 Google Scholar
- 19T. M. Le, J. von Langermann, H. Lorenz, A. Seidel-Morgenstern, J. Pharm. Sci. 2010, 99 (9), 4084–4095.
- 20T. M. Le, T. D. Nguyen, G. T. Nguyen, N. T Tran, Chem. Eng. 2023, 7 (5), 99. DOI: https://doi.org/10.3390/chemengineering7050099
- 21T. M. Le, T. T. Phan, N. T. H. Nguyen, V. M. Phan, Crystals 2022, 221 (12). Doi: https://doi.org/10.3390/cryst12020221
10.3390/cryst8120450 Google Scholar
- 22T. M. Le, N. T. T. Vo, N. T. Vo, H. M. Hoang, J. Tech. Edu.Sci. 2022, 17 (1), 94–101. DOI: https://doi.org/10.54644/jte.70B.2022.1184
10.54644/jte.70B.2022.1184 Google Scholar
- 23V. Tenberg, M. Hokmabadi, A. Seidel-Morgenstern, H. Lorenz, M. Sadeghi, Ind. Eng. Chem. Res. 2023, 62 (1), 753–761.
- 24M. Shahid, G. Sanxaridou, S. Ottoboni, L. Lue, C. Price, Org. Process Res. Dev. 2021, 25 (4), 969–981.
- 25K. C. Lim, M. A. Hashim, B. Sen Gupta, Cryst. Res. Technol. 1999, 34 (4), 491–502.
- 26D. J. W. Grant, M. Mehdizadeh, A. L. Chow, J. E. Fairbrother, Int. J. Pharm. 1984, 18, 25–38.
- 27J. Nývlt, R. Rychlý, J. Gottfried, J. Wurzelová, J. Cryst. Growth 1970, 6 (2), 151–162. DOI: https://doi.org/10.1016/0022-0248(70)90034-5
- 28M. Fernández, J. Klapp, L. D. G. Sigalotti, F. Ruette, Chem. Phys. Lett. 2018, 713, 39–45.
- 29M. T. Parsons, D. A. Knopf, A. K. Bertram, J. Phys. Chem. A 2004, 108 (52), 11600–11608.
- 30D. A. Kosova, A. I. Druzhinina, L. A. Tiflova, A. S. Monayenkova, I. A. Uspenskaya, J. Chem. Thermodyn. 2018, 118, 206–214.
- 31M. M. Abd-Elzaher, J. Chin. Chem. Soc. 1999, 46, 975–982.
- 32K. Sangwal, W. Z. Polak, J. Cryst. Growth 2024, 628, 127562.
- 33N. Zaitseva, L. Carman, H. Klapper, J. Cryst. Growth 2022, 597, 126841.
- 34M. Rezaei, R. Gabitov, A. Sadekov, A. Perez-Huerta, C. Borrelli, A. Stiles, Crystals 2024, 14, 442. DOI: https://doi.org/10.3390/cryst14050442
- 35D. A. Kosova, A. I. Druzhinina, L. A. Tiflova, A. S. Monayenkova, I. A. Uspenskaya, J. Chem. Thermodyn. 2018, 118, 206–214.
- 36B. Kvamme, N. Wei, J. Zhao, S. Zhou, L. Zhang, W. Sun, N. Saeidi, Petroleum 2022, 8 (1), 1–16.
- 37B. Kvamme, Energy Fuels 2021, 35, 17663–17684.
- 38B. S. Krumgalz, J. Phys. Chem. Ref. Data 2018, 47 (2), 023100.
- 39Z. Zhu, Z. Zhu, P. Yin, J. Chem. Eng. Data 53 (2) 2008, 564–565.
- 40C. Han, J. Gao, W. Sun, C. Han, F. Li, B. Li, J. Phys. Conf. Ser. 2022, 2282, 012021.
- 41M. Mohsen-Nia, H. Amiri, B. Jazi, J. Solut. Chem. 2010, 39, 701–708.
- 42Y. Wang, X. Chuai, Y. Li, J. Guo, J. Yang, Z. Liu, S. Xu, Crystals 2022, 12 (2), 202. https://doi.org/10.3390/cryst12020202
- 43V. Verma, J. Zeglinski, S. Hudson, P. Davern, B K. Hodnett, Cryst. Growth Des. 2018, 18 (11), 7158–7172. DOI: https://doi.org/10.1021/acs.cgd.8b01302
- 44T. Hazi Mastan, M. Lenka, D. Sarkar, Ultrason. Sonochem. 2017, 36, 497–506. DOI: https://doi.org/10.1016/j.ultsonch.2016.12.017