Morphology and Wettability of Microporous Copper Deposits Decorated with Silver and Graphene Oxide Nanoparticles
R. Johnsan
National Institute of Technology, Department of Chemical Engineering, 673601 Calicut, India
Search for more papers by this authorCorresponding Author
Sudev Das
National Institute of Technology, Department of Chemical Engineering, 673601 Calicut, India
Correspondence: Sudev Das ([email protected]), National Institute of Technology, Department of Chemical Engineering, Calicut, 673601, India.Search for more papers by this authorC. S. Sujith Kumar
National Institute of Technology, Department of Mechanical Engineering, 673601 Calicut, India
Search for more papers by this authorR. Johnsan
National Institute of Technology, Department of Chemical Engineering, 673601 Calicut, India
Search for more papers by this authorCorresponding Author
Sudev Das
National Institute of Technology, Department of Chemical Engineering, 673601 Calicut, India
Correspondence: Sudev Das ([email protected]), National Institute of Technology, Department of Chemical Engineering, Calicut, 673601, India.Search for more papers by this authorC. S. Sujith Kumar
National Institute of Technology, Department of Mechanical Engineering, 673601 Calicut, India
Search for more papers by this authorAbstract
Graphene oxide (GO) and silver (Ag) nanoparticles were incorporated into the structurally stable microporous copper architecture by electro-co-deposition and galvanic displacement reaction to enhance the thermophysical properties. The microporous architecture of copper (Cu) was prepared by carrying out one-step electrodeposition over a plain copper substrate. The microporous copper deposit laden with micropores and nanodendrites contributes to a substantial surface area. The structural stability of the copper architecture prepared by one step was fortified by carrying out two steps. The two-step electrodeposited copper decorated by Ag dendrites displayed hydrophobicity as Ag dendrites screened the pores, limiting the interaction of water. The presence of GO sheets hampered the concentration of Ag dendrites due to the blanketed copper grains and modified the wettability from permanent hydrophobicity to hydrophilicity.
Supporting Information
Filename | Description |
---|---|
ceat202100559-sup-0001-misc_information.pdf2 MB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 S. Li, R. Furberg, M. S. Toprak, B. Palm, M. Muhammed, Adv. Funct. Mater. 2008, 18 (15), 2215–2220. DOI: https://doi.org/10.1002/adfm.200701405
- 2 A. M. Gheitaghy, H. Saffari, G. Q. Zhang, Heat Transfer Eng. 2019, 40 (9–10), 762–771. DOI: https://doi.org/10.1080/01457632.2018.1442310
- 3 G. Liang, I. Mudawar, Int. J. Heat Mass Transfer 2018, 128, 892–933. DOI: https://doi.org/10.1016/j.ijheatmasstransfer
- 4 C. M. Patil, S. G. Kandlikar, Int. J. Heat Mass Transfer 2014, 79, 816–828. DOI: https://doi.org/10.1016/j.ijheatmasstransfer
- 5 M. S. El-Genk, A. F. Ali, Int. J. Multiphase Flow 2010, 36, 780–792. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2010.06.003
- 6 T. Yang, Y. Han, Cryst. Growth Des. 2016, 16 (5), 2850–2859. DOI: https://doi.org/10.1021/acs.cgd.6b00171
- 7 D. A. Brevnov, T. S. Olson, G. P. López, P. Atanassov, J. Phys. Chem. B 2004, 108 (45), 17531–17536. DOI: https://doi.org/10.1021/jp047096u
- 8 Y.-S. Park et al., Appl. Surf. Sci. 2016, 389, 865–873. DOI: https://doi.org/10.1016/j.apsusc.2016.08.008
- 9 H. Luo, Y. Sui, J. Qi, Q. Meng, F. Wei, Y. He, Mater. Lett. 2017, 196, 354–357. DOI: https://doi.org/10.1016/j.matlet.2017.03.084
- 10 G. Wu, S. Yang, Q. Liu, Appl. Surf. Sci. 2015, 357, 583–592. DOI: https://doi.org/10.1016/j.apsusc.2015.09.055
- 11 J. Fang, B. Ding, X. Song, Y. Han, Appl. Phys. Lett. 2008, 92 (17), 173120. DOI: https://doi.org/10.1063/1.2888770
- 12 M. Ceballos, A. Arizmendi-Morquecho, M. Sánchez-Domínguez, I. López, Mater. Chem. Phys. 2020, 240, 122225. DOI: https://doi.org/10.1016/j.matchemphys.2019.122225
- 13 X.-K. Wang, L. Shao, W.-L. Guo, J.-G. Wang, Y.-P. Zhu, C. Wang, Ultrason. Sonochem. 2009, 16 (6), 747–751. DOI: https://doi.org/10.1016/j.ultsonch.2009.03.005
- 14 X. Wen et al., Langmuir 2006, 22 (10), 4836–4842. DOI: https://doi.org/10.1021/la060267x
- 15 C. Gu, T.-Y. Zhang, Langmuir 2008, 24 (20), 12010–12016. DOI: https://doi.org/10.1021/la802354n
- 16 T. Yang, S. Ren, H. Zhao, Mater. Res. Express 2019, 6 (9), 095003. DOI: https://doi.org/10.1088/2053-1591/ab2a36
- 17 S. Yang, Q. Liu, M. Tan, J. Phys. Chem. C 2017, 121 (12), 6986–6996. DOI: https://doi.org/10.1021/acs.jpcc.6b12179
- 18 A. Safaee, D. K. Sarkar, M. Farzaneh, Appl. Surf. Sci. 2007, 254 (8), 2493–2498. DOI: https://doi.org/10.1016/j.apsusc.2007.09.073
- 19 D. K. Sarkar, R. W. Paynter, J. Adhes. Sci. Technol. 2010, 24 (6), 1181–1189. DOI: https://doi.org/10.1163/016942409X12598231568546
- 20 R. Liu, A. Sen, Chem. Mater. 2012, 24 (1), 48–54. DOI: https://doi.org/10.1021/cm2017714
- 21 C. Gu, H. Ren, J. Tu, T.-Y. Zhang, Langmuir 2009, 25 (20), 12299–12307. DOI: https://doi.org/10.1021/la902936u
- 22 C. D. Gu, X. J. Xu, J. P. Tu, J. Phys. Chem. C 2010, 114 (32), 13614–13619. DOI: https://doi.org/10.1021/jp105182y
- 23 R. Kathiravan, R. Kumar, A. Gupta, R. Chandra, Heat Transfer Eng. 2012, 33 (2), 69–78. DOI: https://doi.org/10.1080/01457632.2011.589306
- 24 B. Jo, P. S. Jeon, J. Yoo, H. J. Kim, J. Visualization 2009, 12 (1), 37–46. DOI: https://doi.org/10.1007/BF03181941
- 25 E. Akbari, A. M. Gheitaghy, H. Saffari, S. M. Hosseinalipour, Exp. Therm. Fluid Sci. 2017, 82, 390–401. DOI: https://doi.org/10.1016/j.expthermflusci.2016.11.037
- 26 H.-C. Shin, M. Liu, Chem. Mater. 2004, 16 (25), 5460–5464. DOI: https://doi.org/10.1021/cm048887b
- 27 H.-C. Shin, J. Dong, M. Liu, Adv. Mater. 2003, 15 (19), 1610–1614. DOI: https://doi.org/10.1002/adma.200305160
- 28 C. E. Albertson, US Patent , 1977. 4018264
- 29 R. Johnsan, S. Das, C. S. S. Kumar, Chem. Eng. Technol. 2021, 44 (5), 934–941. DOI: https://doi.org/10.1002/ceat.202100026
- 30 L. Xiong et al., RSC Adv. 2014, 4 (107), 62115–62122. DOI: https://doi.org/10.1039/C4RA12406E
- 31 T. J. Rupert, J. C. Trenkle, C. A. Schuh, Acta Mater. 2011, 59 (4), 1619–1631. DOI: https://doi.org/10.1016/j.actamat.2010.11.026
- 32 K. H. Lee et al., J. Alloys Compd. 2021, 881, 160522. DOI: https://doi.org/10.1016/j.jallcom.2021.160522
- 33 A. Kumar, A. M. Sadanandhan, S. L. Jain, New J. Chem. 2019, 43 (23), 9116–9122. DOI: https://doi.org/10.1039/C9NJ00852G
- 34 Q. Jiang, H. M. Lu, Surf. Sci. Rep. 2008, 63 (10), 427–464. DOI: https://doi.org/10.1016/j.surfrep.2008.07.001
- 35 A. B. D. Cassie, S. Baxter, Trans. Faraday Soc. 1944, 40, 546. DOI: https://doi.org/10.1039/tf9444000546